• Title/Summary/Keyword: Unified PID Control

Search Result 6, Processing Time 0.026 seconds

Implementation of the High Performance Unified PID Position Controller for Linear Motor Drive with Easy Gain Ajustment Part I - Feature of the Unified PID Position Controller (이득 설계가 간단한 선형전동기 구동용 고성능 통합 PID 위치제어기 구현 제1부: 통합 PID 위치제어기 특성)

  • Kim, Jun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.4
    • /
    • pp.187-194
    • /
    • 2002
  • Recently, the application of the linear machine far industrial field is remarkable increased, especially for the gantry machine, machine tool system and CNC. In these application fields, high dynamics position control performance Is essentially required in both the steady and the transient state. This pacer presents simple but powerful position control loop based on traditional PID controller. The presented position control algorithm, named 'Unified PID Position Controller'has great features for the linear machine drives such as no over-shoot phenomena and simple gain tuning strategy. Through the experimental results with commercial linear motors, it is shown that the proposed algorithm has excellent dynamics suitable fur linear motions.

New Unified PID Position Control Algorithm for High Performance Position Control Loop Using Linear Machine Drive (선형 전동기의 고성능 위치 제어를 위한 새로운 통합 PID 제어기에 관한 연구)

  • Lee, You-In;Kim, Joohn-Sheok;Kim, Yong-Yil
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.389-391
    • /
    • 1999
  • Recently, the application of the linear machine for industrial field is remarkable increased, especially for the gantry machine. machine tool system and CNC. In these application fields. high precise position control performance is essentially required in both the steady and transient state. And linear machine is necessary for high-precision processing and manipulation when relatively high forces are involved. This paper presents the new unified PID position control algorithm which have rare sensitivity to disturbance, which the gain adjusting process is simple. Also this paper investigates the use of the New Unified PID control to design for high stiffness. Through the experimental results, it is shown that the proposed algorithm has high dynamic characteristic for the linear machine application field nevertheless of its simple structure.

  • PDF

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

Temperature control of a batch PMMA polymerization reactor using adaptive predictive control algorithm

  • Huh, Yun-Jun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.51-55
    • /
    • 1995
  • An adaptive unified predictive control (UPC) algorithm is applied to a batch polymerization reactor for poly(methyl methancrylate) (PMMA) and the effects of controller parameters are investigated. Computational studies are performed for a batch polymerization system model developed in this study. A transfer function in parametric form is estimated by recursive least squares (RLS) method, and the UPC algorithm is implemented to control the reactor temperature on the basis of this transfer function. The adaptive unified predictive controller shows a better performance than the PID controller for tracking set point changes, especially in the latter part of reaction course when gel effect becomes significant. Various performance can be acquired by selecting adequate values for parameters of the adaptive unified predictive controller; in other words, the optimal set of parameters exists for a given set of reaction conditions and control objective.

  • PDF

A New Unified Method for Anti-windup and Bumpless Transfer (누적방지 무충돌전환을 위한 새로운 통합형 기법)

  • Kim, Tae-Shin;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.655-660
    • /
    • 2009
  • In many real applications, the discrepancy problem between controller outputs and plant inputs or the abrupt variation problem of controller outputs can occur. These problems have a negative effect on control performance and stability. It is well-known that two phenomena called 'windup' and 'bump' cause these problems. So far these problems have been studied separately in each side of the anti-windup and the bumpless transfer. This paper proposes a new unified method combines the anti-windup and the bumpless transfer method using the linear quadratic minimization and a proper state space model representation for the anti-windup controller. The proposed method has a feature that it takes account of both the anti-windup and the bumpless transfer in one formula. Finally, we exemplify the performance of the proposed method via numerical examples using the controller switching between the anti-windup PID controller and the anti-windup LQ controller.

Unified Motion and Force Control of JS-10 Robot Manipulator Based on Operational Space and 3D CAD (작업공간과 3D CAD를 기반으로 하는 JS-10 매니플레이터의 운동과 힘의 통합제어)

  • Ahn, D.S.;Nguyen, Van Phuc
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.57-63
    • /
    • 2012
  • 본 논문은 작업공간상에서 로봇 운동과 힘의 통합제어를 구현할 수 있는 플랫폼의 구현에 초점을 두고 있다. 조립 또는 디버링 같은 접촉작업에서의 매니플레이터 효율성 제고나 친 인간 환경에서의 휴머노이드 로봇의 안정성을 위해서는 종래의 PID 제어나 관절공간상에서의 CTM(Computed Torque Method) 제어보다는 작업공간상에서의 운동과 힘의 통합제어를 실시해야 한다. 이것을 위해서는 작업공간상에서의 엔드이펙트(end-effector, E-E)에 대한 동역학식과 자코비안(jacobian)을 도출해야 하며 이를 위해서는 각종 동적파라미터의 정확한 동정이 중요하다. 본 논문에서는 3D CAD 모델링, MATLAB, 동역학 시뮬레이터를 활용하여 로봇 모델링, 동역학식과 동적 파라미터 추출, 운동과 힘의 실시간 통합제어 시뮬레이션등을 쉽고 일관되게 진행할 수 있는 플랫폼을 구현하였고 적용예로써 JS-10로봇을 택해서 그 효용성을 입증하였다.