• Title/Summary/Keyword: Unicast Routing

Search Result 44, Processing Time 0.019 seconds

Explicit Multicast for Small Group Communications in Heterogeneous Mobile Networks (이종 모바일 네트워크에서의 소규모 그룹 통신을 위한 명시적 멀티캐스트)

  • Kim Wan-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.15-24
    • /
    • 2006
  • We design and implement explicit mobile multicast, named XMIP, by enhancing explicit multicast for a great number of small group multicast communications. XMIP is a straightforward multicast mechanism without maintaining multicast states due to the inheritance from the explicit multicast based on a unicast routing. This research modifies and extends the functionality of each mobility agent of IETF Mobile IP for interworking XMIP XMIP Packets captured by an extended home agent are forwarded to each extended foreign agent through nested tunnels, named X-in-X tunnels, made by the binding table of the extended home agent. X-in-X tunneling mechanism can effectively solve the serious traffic concentration problems of Mobile IP multicast specifications. Finally heterogeneous mobile networks as an XMIP testbed including CDMA2000 1X EV-DO and WLAN are actually established, and a multi-user instant messenger system for small group communications is developed for verifying the feasibility of the proposed protocols.

Domain name system for the efficient name service in mobile ad hoc networks (이동 애드혹 네트워크에서 효율적인 네임 서비스 제공을 위한 도메인 네임 시스템)

  • Ahn, Sang-Hyun;Lim, Yu-Jin;Kim, Sung-Rim
    • 전자공학회논문지 IE
    • /
    • v.44 no.1
    • /
    • pp.20-26
    • /
    • 2007
  • Most researches on the mobile ad hoc network (MANET) have been focused on routing protocols, but for the real service provision DNS(Domain Name System) has to be supported first. Due to the inherent characteristics of the mobile ad hoc network, the DNS of the wired network is assumed to be not good for the MANET environment. The approach of distributed DNSs can easily adapt to the node mobility, but incurs the name conflict resolution overhead. On the other hand, the centralized approach performs the name resolution based on the unicast communication without causing the name conflict resolution overhead. The most important issue of the centralized approach is to provide the seamless name resolution service under server mobility. Therefore, in this paper, we propose a new centralized DNS, Manet DNS, which works efficiently on name allocation and management and solves the network merging and partitioning problem as well as providing the seamless name resolution service.

A Group Key Management for Real-Time Multicasting Information Security (실시간 멀티캐스팅 정보보안을 위한 그룹키 관리)

  • Hong, Jong-Joon;Hwang, Kyo-Chul
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.809-814
    • /
    • 2003
  • The multicast transmitting the real-time data to groups may easily have many attacks from abnormal attacks because it has many links as compared to the unicast. The existing group key management architectures for preventing these problems are designed for protocols suitable for a large scale. Thus these architectures applied to a small scale routing protocols may have many overheads with key distribution and a constant core tree. Therefore this paper proposes a groups key management protocol for a secure multicast in PIM-SM multicast group communication. The proposed method divide multicast groups with RO(Rendezvous-Point), and subgroup key managers are established in each RP and can be transmitted groups keys between senders and receivers, so the security cannel is set up for secure data transfer, And this does not have needs of the data translation for group keys and the new key distribution for path change. As a result of this, the data transmission time can be reduced.

A Study on Hierarchical Overlay Multicast Architecture in Mobile Ad Hoc Networks (Mobile Ad Hoc 네트워크를 위한 계층적 오버레이 멀티캐스트 구조 연구)

  • Kim, Kap-Dong;Park, Jun-Hee;Lee, Kwang-Il;Kim, Hag-Young;Kim, Sang-Ha
    • The KIPS Transactions:PartC
    • /
    • v.13C no.5 s.108
    • /
    • pp.627-634
    • /
    • 2006
  • Overlay network eliminates the need to change the application-layer tree when the underlying network changes and enables the overlay network to survive in environments where nonmember nodes do not support multicast functionality. An overlay protocol monitors group dynamics, while underlying unicast protocols track network dynamics, resulting in more stable protocol operation and low control overhead even in a highly dynamic environment. But, if overlay multicast protocols does not know the location information of node, this makes it very difficult to build an efficient multicasting tree. So, we propose a Hierarchical Overlay Multicast Architecture (HOMA) with the location information. Because proposed architecture makes static region-based dynamic group by multicast members, it is 2-tired overlay multicasts of application layer that higher layer forms overlay multicast network between members that represent group, and support multicast between multicast members belonging to region at lower layer. This use GPS, take advantage of geographical region, and realizes a region-sensitive higher layer overlay multicast tree which is impervious to the movements of nodes. The simulation results show that our approach solves the efficiency problem effectively.