• 제목/요약/키워드: Uniaxial tensile behavior

검색결과 147건 처리시간 0.025초

Uniaxial tensile test integrated design considering mould-fixture for UHPC

  • Zhang, Xiaochen;Shen, Chao;Zhang, Xuesen;Wu, Xiangguo;Faqiang, Qiu;Mitobaba, Josue G.
    • Advances in Computational Design
    • /
    • 제7권4호
    • /
    • pp.281-295
    • /
    • 2022
  • Tensile property is one of the excellent properties of ultra-high performance concrete (UHPC), and uniaxial tensile test is an important and challenging mechanical performance test of UHPC. Traditional uniaxial tensile tests of concrete materials have inherent defects such as initial eccentricity, which often lead to cracks and failure in non-test zone, and affect the testing accuracy of tensile properties of materials. In this paper, an original integrated design scheme of mould and end fixture is proposed, which achieves seamless matching between the tension end of specimen and the test fixture, and minimizes the cumulative eccentricity caused by the difference in the matching between the tension end of specimen and the local stress concentration at the end. The stress analysis and optimization design are carried out by finite element method. The curve transition in the end of specimen is preferred compared to straight line transition. The rationality of the new integrated design is verified by uniaxial tensile test of strain hardening UHPC, in which the whole stress-strain curve was measured, including the elastic behavior before cracking,strain hardening behavior after cracking and strain softening behavior.

Tensile Characteristics and Behavior of Blood Vessels from Human Brain in Uniaxial Tensile Test

  • Suh, Chang-Min;Kim, Sung-Ho;Ken L. Monson;Werner Goldsmith
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.1016-1025
    • /
    • 2003
  • The rupture of blood vessels in the human brain results in serious pathological and medical problems. In particular, brain hemorrhage and hematomas resulting from impact to the head are a major cause of death. As such, investigating the tensile behavior and rupture of blood vessels in the brain is very important from a medical point of view. In the present study, the tensile characteristics of the blood vessels in the human brain were analyzed using a quasi-static uniaxial tensile test, and the properties of the arteries and veins compared. In addition, to compare the tensile behavior and demonstrate the validity of the experimental results, blood vessels from the legs of pigs were also tested and analyzed. The overall results were in accordance with the histological structures and previous medical reports.

섬유 분포에 따른 ECC 1축 인장 거동 (Uniaxial Tension Behavior According to the Distribution of Fiber Orientation)

  • 이방연;김윤용;김진근;남관우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.531-532
    • /
    • 2009
  • 이 논문에서는 섬유 분포 특성을 반영하여 균열 간격을 계산할 수 있는 수식을 유도하고, 이를 바탕으로 ECC의 1축 인장 거동을 예측하였다. 예측 결과와 실험 결과는 약 10% 오차가 발생하였다.

  • PDF

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

HPFRCC Beam 부재의 전단거동에 관한 실험적 연구 (Experimental Study on Shear Behavior of HPFRCC Beam)

  • 송태화;이성철;신경준;장승필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.289-292
    • /
    • 2006
  • In this research, bending shear test of HPFRCC beams is conducted to obtain the shear strength of HPFRCC beams. Parameters are ratio of volume percentage of fibers. Also, the uniaxial tensile test of HPFRCC is conducted to obtain the tensile cracking stress of each parameters. From the uniaxial tensile test result, the shear strength of HPFRCC beams can be calculated by using the preexisting shear analysis model. Then, the shear strengths of bending shear test result and analysis result are compared.

  • PDF

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF

잔류응력을 고려한 섬유 금속 적층판의 기계적 물성치 예측에 관한 이론적 연구 (Analytical Study for the Prediction of Mechanical Properties of a Fiber Metal Laminate Considering Residual Stress)

  • 강동식;이병언;박으뜸;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제23권5호
    • /
    • pp.289-296
    • /
    • 2014
  • Uniaxial tensile tests were conducted to accurately evaluate the in-plane mechanical properties of fiber metal laminates (FMLs). The FMLs in the current study are comprised of a layer of self-reinforced polypropylene (SRPP) sandwiched between two layers of aluminum alloy 5052-H34. The nonlinear tensile behavior of the FMLs under in-plane loading conditions was investigated using both numerical simulations and a theoretical analysis. The numerical simulation was based on finite element modeling using the ABAQUS/Explicit code and the theoretical constitutive model was based on the volume fraction approach using the rule of mixture and a modification of the classical lamination theory, which incorporates the elastic-plastic behavior of the aluminum alloy and the SRPP. The simulations and the model are used to predict the inplane mechanical properties such as stress-strain response and deformation behavior of the FMLs. In addition, a post-stretching process is used to reduce the thermal residual stresses before uniaxial tensile testing of the FMLs. Through comparison of both the numerical simulations and the theoretical analysis with the experimental results, it is concluded that the numerical simulation model and the theoretical approach can describe with sufficient accuracy the actual tensile stress-strain behavior of the FMLs.

Theoretical explanation of rock splitting based on the micromechanical method

  • Huang, Houxu;Li, Jie;Hao, Yiqing;Dong, Xin
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.225-231
    • /
    • 2018
  • In this paper, in order to explain the splitting of cylindrical rock specimen under uniaxial loading, cracks in cylindrical rock specimen are divided into two kinds, the longitudinal crack and the slanting crack. Mechanical behavior of the rock is described by elastic-brittle-plastic model and splitting is assumed to suddenly occur when the uniaxial compressive strength is reached. Expression of the stresses induced by the longitudinal crack in direction perpendicular to the major axis of the crack is deduced by using the Maxwell model. Results show that the induced stress is tensile and can be greater than the tensile strength even before the uniaxial compressive strength is reached. By using the Inglis's formula and simplifying the cracks as slender ellipse, the above conclusions that drawn by using the Maxwell model are confirmed. Compared to shearing fracture, energy consumption of splitting seems to be less, and splitting is most likely to occur when the uniaxial loading is great and quick. Besides, explaining the rock core disking occurred under the fast axial unloading by using the Maxwell model may be helpful for understanding that rock core disking is fundamentally a tensile failure phenomenon.

Tensile strain-hardening behaviors and crack patterns of slag-based fiber-reinforced composites

  • Kwon, Seung-Jun;Choi, Jeong-Il;Nguyen, Huy Hoang;Lee, Bang Yeon
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.231-237
    • /
    • 2018
  • A strain-hardening highly ductile composite based on an alkali-activated slag binder and synthetic fibers is a promising construction material due to its excellent tensile behavior and owing to the ecofriendly characteristics of its binder. This study investigated the effect of different types of synthetic fibers and water-to-binder ratios on the compressive strength and tensile behavior of slag-based cementless composites. Alkali-activated slag was used as a binder and water-to-binder ratios of 0.35, 0.45, and 0.55 were considered. Three types of fibers, polypropylene fiber, polyethylene (PE) fiber, and polyparaphenylene-benzobisethiazole (PBO) fiber, were used as reinforcing fibers, and compression and uniaxial tension tests were performed. The test results showed that the PE fiber series composites exhibited superior tensile behavior in terms of the tensile strain capacity and crack patterns while PBO fiber series composites had high tensile strength levels and tight crack widths and spacing distances.