• 제목/요약/키워드: Uniaxial tensile

검색결과 419건 처리시간 0.032초

Development of wrinkled skin-on-a-chip (WSOC) by cyclic uniaxial stretching

  • Lim, Ho Yeong;Kim, Jaewon;Song, Hyun Jeong;Kim, Kyunghee;Choi, Kyung Chan;Park, Sungsu;Sung, Gun Yong
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.238-245
    • /
    • 2018
  • The skin experiences constant physical stimuli, such as stretching. Exposure to excessive physical stimuli stresses the skin and can accelerate aging. In this study, we applied a method that allowed human fibroblasts and keratinocytes to be perfused with media to form 3D skin equivalents that were then uniaxially 10%-stretched for 12 h per day (at either 0.01 or 0.05 Hz) for up to 7 days to form wrinkled skin-on-a-chip (WSOC). There was more wrinkling seen in skin equivalents under 0.01 Hz uniaxial stretching than there was for non-stretched skin equivalents. At 0.05 Hz, the stratum corneum almost disappeared from the skin equivalents, indicating that stretching was harmful for the epidermis. At both frequencies, the production of collagen and related proteins in the skin equivalents, such as fibronectin 10 and keratin, decreased more than those in the non-stretched equivalents, indicating that the dermis also suffered from the repeated tensile stress. These results suggest that WSOCs can be used to examine skin aging and as an in vitro tool to evaluate the efficacy of anti-wrinkle cosmetics and medicines.

Tensile Behavior of Highly Ductile Cementitious Composites Using Normal Sand as Fine Aggregate (일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제21권6호
    • /
    • pp.178-184
    • /
    • 2017
  • This study was aimed to investigate the tensile behaviors of PE(Polyethylene) fiber-reinforced highly ductile cementitious composites with different combinations of micro silica sand and normal sand(river sand) with maximum particle size of 4.75 mm. Flow test result indicated the increase of flowability with higher replacement ratio of river sand. There was no noticeable difference in the mean compressive strength with different replacement ratio of river sand, but the variation in the compressive strength increased as higher amount of river sand was adopted for the replacement. The difference in the uniaxial tensile strength was negligible, but the tensile strain capacity was significantly influenced by the replacement ratio of river sand. It is thought that increased density of multiple cracks induced improved tensile strain capacity when higher percentage of river sand was adopted for fine aggregate. The deviation in the strain capacity increased as the replacement ratio of river sand was higher, as in the compressive strength. This study presented the feasibility of using normal sand instead of micro silica sand for highly ductile cementitious composites with equivalent or better uniaxial tensile performance, even though it might increase the deviation in the performance.

Temperature-Dependency of Tensile Properties of GFRP Composite for Wind Turbine Blades (풍력 발전 블레이드 복합재 GFRP의 인장 특성의 온도 의존성)

  • Huh, Yong-Hak;Kim, Jong-Il;Kim, Dong-Jin;Lee, Gun-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제36권9호
    • /
    • pp.1053-1057
    • /
    • 2012
  • In this study, the temperature-dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial ($0^{\circ}$) and triaxial ($0/{\pm}45^{\circ}$) laminate composite plates were measured at four different testing temperatures-room temperature, $-30^{\circ}C$, $-50^{\circ}C$, and $60^{\circ}C$. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature.

Finite Element Analysis of Superplastic Forming Considering Grain Growth-II. Superplastic Behavior of AZ31 Alloy (결정립 성장을 고려한 초소성 성형공정의 유한요소해석-II. AZ31 합금의초소성 거동)

  • Kim, Y.G.;Kim, S.H.;Kwon, Y.N.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • 제21권7호
    • /
    • pp.403-411
    • /
    • 2012
  • The aim of this study was to predict the results of superplastic forming on magnesium alloy, by considering the grain growth using numerical simulations. Superplastic behavior of AZ31 alloy was investigated through a set of uniaxial tensile tests that cover the forming temperatures ranges from 375 to $450^{\circ}C$. All the material parameters in the model, which consists of a constitutive equation and a grain growth equation, were determined. The model was used in the finite element analysis for uniaxial tensile tests and superplastic blow forming, through a user-subroutine available within ABAQUS. From this study, the effect of grain growth during forming was evaluated. The results show that it is essential to include the effect of grain growth in predicting the behavior during superplastic forming of this magnesium alloy.

Tension stiffening effect of RC panels subject to biaxial stresses

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • 제1권4호
    • /
    • pp.417-432
    • /
    • 2004
  • An analytical model which can simulate the post-cracking nonlinear behavior of reinforced concrete (RC) members such as bars and panels subject to uniaxial and biaxial stresses is presented. The proposed model includes the description of biaxial failure criteria and the average stress-strain relation of reinforcing steel. Based on strain distribution functions of steel and concrete after cracking, a criterion to consider the tension-stiffening effect is proposed using the concept of average stresses and strains. The validity of the introduced model is established by comparing the analytical predictions for reinforced concrete uniaxial tension members with results from experimental studies. In advance, correlation studies between analytical results and experimental data are also extended to RC panels subject to biaxial tensile stresses to verify the efficiency of the proposed model and to identify the significance of various effects on the response of biaxially loaded reinforced concrete panels.

A study on the formability with heat treatment and deformation temperature in warm hydroforming of Al 6061 tube (Al6061 tube의 열처리조건과 온도에 따른 액압성형성에 관한 특성 연구)

  • Yi H. K.;Lee Y. S.;Moon Y. H.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.255-258
    • /
    • 2005
  • In this study, the effect of heat treatment conditions and deformation temperature on the formability were investigated in warm hydroforming of Al 6061 tube. Full annealing and T6-treatment for heattreatment of Al6061 tube were used in this study. To evaluate the hydroformability, uniaxial tensile test and bulge test were performed between room temperature and $300^{\circ}C$. And measured flow stress was used to simulate the hydroforming of Al 6061. A commercial FEM code, DEFORM2D, was used to calculate the damage and strain variation. The calculated values were efficient to predict the forming limit in hydroforming for real complex shaped part.

  • PDF

A Study on Deformation Behaviors of Al 6061, 7075 Tube at Different Heat Treatments for Warm Hydroforming (온간액압성형공정 적용을 위한 알루미늄 6061, 7075 튜브의 열처리조건에 따른 변형특성연구)

  • Yi, Hyae-Kyung;Moon, Young Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2007
  • The deformation behaviors of full annealed and T6 treated 6061, 7075 aluminum tubes are investigated at various temperature performing uniaxial tensile test. Full annealed Al 6061 and Al7075 tubes, and T6 treated Al7075 tube don't show sharp local necking with an elongation of 50% at $300^{\circ}C$. So it is expected that influenced by elevated tempterature. At $300^{\circ}C$ and strain rate of 0.001/s, many micro-cracks are observed in T6 treated Al 6061 tube, which is believed to be responsible for the decrease of total elongation.

스테인레스강 저주기 피로 수명 분포의 추계적 모델링

  • 이봉훈;이순복
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 한국신뢰성학회 2000년도 춘계학술대회 발표논문집
    • /
    • pp.213-222
    • /
    • 2000
  • In present study, a stochastic model is developed for the low cycle fatigue life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. In the proposed model, fatigue phenomenon is considered as a Markov process, and damage vector and reliability are defined on every plane. Any low cycle fatigue damage evaluating method can be included in the proposed model. The model enables calculation of statistical reliability and crack initiation direction under variable multiaxial loading, which are generally not available. In present study, a critical plane method proposed by Kandil et al., maximum tensile strain range, and von Mises equivalent strain range are used to calculate fatigue damage. When the critical plane method is chosen, the effect of multiple critical planes is also included in the proposed model. Maximum tensile strain and von Mises strain methods are used for the demonstration of the generality of the proposed model. The material properties and the stochastic model parameters are obtained from uniaxial tests only. The stochastic model made of the parameters obtained from the uniaxial tests is applied to the life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. The predicted results show good accordance with experimental results.

  • PDF

Investigation of Strain Measurements using Digital Image Correlation with a Finite Element Method

  • Zhao, Jian;Zhao, Dong
    • Journal of the Optical Society of Korea
    • /
    • 제17권5호
    • /
    • pp.399-404
    • /
    • 2013
  • This article proposes a digital image correlation (DIC) strain measurement method based on a finite element (FE) algorithm. A two-step digital image correlation is presented. In the first step, the gradient-based subpixels technique is used to search the displacements of a region of interest of the specimen, and then the strain fields are obtained by utilizing the finite element method in the second step. Both simulation and experiment processing, including tensile strain deformation, show that the proposed method can achieve nearly the same accuracy as the cubic spline interpolation method in most cases and higher accuracy in some cases, such as the simulations of uniaxial tension with and without noise. The results show that it also has a good noise-robustness. Finally, this method is used in the uniaxial tensile testing for Dahurian Larch wood specimens with or without a hole, and the obtained strain values are close to the results which were obtained from the strain gauge and the cubic spline interpolation method.

Evaluation of Flow Stress of Metal up to High Strain (금속소재의 고변형률 영역 유동응력선도 평가)

  • Lee, S.K.;Lee, I.K.;Lee, S.Y.;Lee, S.M.;Jeong, M.S.
    • Transactions of Materials Processing
    • /
    • 제29권6호
    • /
    • pp.316-322
    • /
    • 2020
  • The flow stress curve is usually determined via uniaxial tensile or simple compression test. However, the flow stress curve up to high strain cannot be obtained using these two tests. This study presents a simple method for obtaining the flow stress curve up to high strain via FE analysis, a simple compression test, and an indentation test. In order to draw the flow stress curve up to high strain, the indentation test was carried out with the pre-stained specimen using the simple compression test. The flow stress curve of Al6110 was evaluated up to high strain using the proposed method, and the result was compared with the flow stress curve of the uniaxial tensile test of the initial material.