• Title/Summary/Keyword: Uniaxial compressive strength

Search Result 456, Processing Time 0.052 seconds

Study on the Physical Properties according to the Anisotropy of Granite (화강암의 이방성에 따른 물리적 특성 연구)

  • 박윤석;강추원
    • Explosives and Blasting
    • /
    • v.21 no.4
    • /
    • pp.23-35
    • /
    • 2003
  • This study is to clarify the comparative relationship and a mechanical anisotropy of rock on the subject of granite distributed in the Namwon area Uniaxial compressive and Brazilian strengths with respect to the horizontal and vertical axes of granite are shown the linear relation. In the case of the result of the p-wave velocity measurement. it is represented that the velocity of vortical direction is faster about 10 to 15% than other two horizontal directions. The difference between velocities is caused by a developmental pattern of microcracks distributed in rock. Moreover, this result is very consistent with the result investigated through thin sections. The proportion of uniaxial compression strength to Index of point load strength ($Is_{(50)}$) is 18~20 times in case of granite. Uniaxial compressive strength is relatively good relationship with point load strength, Schmidt hammer rebound value, and tensile strength point load strength of them is the best comparative relationship. It is indicated that point load test is the most useful tool to estimate uniaxial compressive strength, comparing with other experimental methods.

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

Stress relaxation effect on uniaxial compressive strength values of a silt type soil

  • Eren Komurlu
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.495-502
    • /
    • 2023
  • In this study, stress relaxation tests were carried out by keeping silt type soil specimens under different strain levels. Decreases in the stress values with time data was collected to better understand the effect of the strain level on the relaxation properties of soil specimens. In addition, the stress relaxation effect on the uniaxial compressive strength (UCS) values of the specimens was investigated with a series of tests. According to the results obtained from this study, the UCS values of the silt specimens significantly vary as a result of the stress relaxation effect. The UCS values were determined to increase with an increase of relaxation strain level to a threshold value. On the other hand, the UCS values were found to be affected adversely in case of high stress levels at the initiation of the relaxation, which are close to the peak level.

A study on anisotropic characteristics of axial strengths in $\alpha$-quartz by using molecular dynamics simulation and uniaxial compression test (분자동력 학 시뮬레이션과 일축압축강도시험을 이용한 $\alpha$-quartz의 결정축에 따른 강도이방성 검토)

  • ;;市川康明;河村雄行
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.70-79
    • /
    • 2000
  • We carried out NPT-ensemble (constant-number of particles, pressure, and temperature) Molecular Dynamics (MD) simulations for measuring strength anisotropy under uniaxial compressive stress rotated to the crystallographic axes in $\alpha$-quartz. Uniaxial compressive strengths of a single quartz crystal were measured in directions of the a- and c-axis. Measured uniaxial strength of a single quartz crystal was higher in the direction parallel to the c-axis than that measured in the direction normal to the c-axis. However the reverse was found in calculated uniaxial strengths by MD simulation. The contradictive result of strengths was observed in both cases but was found to be different in origin. Strength anisotropy of defectless $\alpha$-quartz crystal in MD simulation is basically caused by structural difference of quartz. By contrast, anisotropy of measured strength in the uniaxial compression test is related to oriented micro-defects developed during crystal growth.

  • PDF

Mechanical Characteristics of Light-weighted Soils Using Dredged Soils (준설토를 활용한 경량혼합토의 역학적 특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.75-83
    • /
    • 2002
  • This paper is to investigate the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene(EPS), dredged clays and cement by using both uniaxial and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analysed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing stress. In the triaxial compression state, it is found that the compressive strength of LWS containing EPS is independent on the effective confined stress. As the EPS ratio decreases($A_E$<2%) and cement ratio increases($A_c$>2%), the behavior characteristics of triaxial compressive strength-strain relationship is similar to that of cemented soil which decreases rapidly in compressive strength after ultimate compressive strength. For the applications of LWS to ground improvements which require the compressive strength of up to 200kPa, the optimized EPS ratio and initial water content of dredged clay are estimated to be 3~4% and 165~175%, respectively. Also, the ultimate compressive strength under both triaxial test and uniaxial compression states are almost constant for a cement ratio of up to 2% and then critical cement ratio of this LWS shall be 2%.

Effect of moisture on the compressive strength of low-strength hollow concrete blocks

  • Syiemiong, Hopeful;Marthong, Comingstarful
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.267-272
    • /
    • 2019
  • In order to study the effect of moisture on the compressive strength of low-strength hollow concrete blocks, an experimental study was carried out on 96 samples of locally manufactured hollow concrete blocks collected from three different locations. Uniaxial compression tests were conducted on dry specimens and three types of saturated specimens with moisture contents of 30%, 50% and 80% respectively. The range of moisture content adopted covered the range within which the concrete block samples are saturated in the dry and monsoon seasons. The compressive strength of low-strength hollow concrete blocks decreases with increase in moisture content and the relationship between compressive strength of hollow concrete blocks and their moisture content can be considered to be linear. However, the strength degradation of 30% moist concrete blocks with respect to dry blocks is relatively low and can be considered to be comparable to dry concrete blocks. A formula indicating the relationship between the moisture content and compressive strength of low-strength hollow concrete blocks is also proposed.

Fundamental Properties of Controlled Low Strength Materials Mixed Blast Furnace Slag and Sewage Sludge (고로슬래그미분말 및 하수슬러지를 혼입한 시멘트계 저강도 재료의 기초적 물성)

  • Kim, Dong-Hun;Park, Shin;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.53-54
    • /
    • 2015
  • As the result of uniaxial compression strength test on the CLMS mixing BFS and SS with BFS 4000, it required to determine the desired strength through increasing unit quantity of cement in mixing process because of dramatic strength deterioration of strength according to increasing replacing rate. In this study's result, regardless of differences in fine aggregates used, in order to get uniaxial compression strength in the scope exceeding criteria of minimum strength for applying to the field, the most reasonable combination was to mix replacing BFS with fineness of 6000 in 30%. For the CLMS mixing BFS and SS, in order to improve flow ability by securing quantity of minimum unit and to repress bleeding rate with securing uniaxial compress strength considering the field applicability, regardless of differences in fine aggregates used, to mix BFS over 6000 in 30% was most effective.

  • PDF

A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks (암석의 강도 및 변형거동의 온도의존성에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Lazemi, Hossein Ali
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.505-516
    • /
    • 2018
  • In this paper, the effects of particle size and model scale of concrete has been investigated on the failure mechanism of PFC2D numerical models under uniaxial compressive test. For this purpose, rectangular models with same particle sizes and different model dimensions, i.e., $3mm{\times}6mm$, $6mm{\times}12mm$, $12mm{\times}24mm$, $25mm{\times}50mm$ and $54mm{\times}108mm$, were prepared. Also rectangular models with dimension of $54mm{\times}108mm$ and different particle sizes, i.e., 0.27 mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, 1.87 mm and 2.27 mm were simulated using PFC2D and tested under uniaxial compressive test. Concurrent with uniaxial test, direct shear test was performed on the numerical models. Dimension of the models were $75{\times}100mm$. Two narrow bands of particles with dimension of $37.5mm{\times}20mm$ were removed from upper and lower of the model to supply the shear test condition. The particle sizes in the models were 0.47 mm, 0.57 mm, 0.67 mm and 0.77 mm. The result shows that failure pattern was affected by model scale and particle size. The uniaxial compressive strength and shear strength were increased by increasing the model scale and particle size.

Investigation on Shape Effect of Rock Specimens to Uniaxial Compressive Strength and Modification of Performance Prediction Model of a Roadheader (일축압축강도에 미치는 암석시편의 형상효과 고찰 및 로드헤더 굴진율 예측모델 수정)

  • Kim, Mun-Gyu;Lee, Sang-Min;Cho, Jung-Woo;Choi, Sung-Hyun;Eom, Jun-Won
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.440-459
    • /
    • 2021
  • Roadheaders have begun to be adopted in Korean tunneling sites. The performance prediction models proposed by the manufacturer are used by Korean construction companies. The models use UCS (uniaxial compressive strength) value to predict the net cutting rate, but the rock specimens conducted for the uniaxial compression test have 1.0 of the diameter to length ratio. It has been reported that the specimen shape generally influences the rock strength. The previous references studying the shape effect were cited, and the UCS data of Korean rocks are also updated to analyze the shape effect on UCS. The cause of effect was discussed by previous theory. The change amount of UCS values of Korean rocks was estimated by the data, and the modified prediction model for NCR was finally suggested.