• 제목/요약/키워드: Uniaxial Tension

검색결과 263건 처리시간 0.027초

3차원 결정소성 유한요소해석을 통한 변형 집합조직 예측 (Prediction of Deformation Texture Based on a Three-Dimensional Crystal Plasticity Finite Element Method)

  • 정경환;김동규;임용택;이용신
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.252-257
    • /
    • 2012
  • Crystallographic texture evolution during forming processes has a significant effect on the anisotropic flow behavior of crystalline material. In this study, a crystal plasticity finite element method (CPFEM), which incorporates the crystal plasticity constitutive law into a three-dimensional finite element method, was used to investigate texture evolution of a face-centered-cubic material - an aluminum alloy. A rate-dependent polycrystalline theory was fully implemented within an in-house program, CAMPform3D. Each integration point in the element was considered to be a polycrystalline aggregate consisting of a large number of grains, and the deformation of each grain in the aggregate was assumed to be the same as the macroscopic deformation of the aggregate. The texture evolution during three different deformation modes - uniaxial tension, uniaxial compression, and plane strain compression - was investigated in terms of pole figures and compared to experimental data available in the literature.

Modeling concrete fracturing using a hybrid finite-discrete element method

  • Elmo, Davide;Mitelman, Amichai
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.297-304
    • /
    • 2021
  • The hybrid Finite-Discrete Element (FDEM) approach combines aspects of both finite elements and discrete elements with fracture mechanics principles, and therefore it is well suited for realistic simulation of quasi-brittle materials. Notwithstanding, in the literature its application for the analysis of concrete is rather limited. In this paper, the proprietary FDEM code ELFEN is used to model concrete specimens under uniaxial compression and indirect tension (Brazilian tests) of different sizes. The results show that phenomena such as size effect and influence of strain-rate are captured using this modeling technique. In addition, a preliminary model of a slab subjected to dynamic shear punching due to progressive collapse is presented. The resulting fracturing pattern of the impacted slab is similar to observations from actual collapse.

알루미나 튜브의 복합하중 파괴에 미치는 압축응력의 영향 (Effect of Compressive Stress on Multiaxial Loading Fracture of Alumina Tubes)

  • 김기태;서정
    • 한국세라믹학회지
    • /
    • 제28권10호
    • /
    • pp.810-818
    • /
    • 1991
  • Fracture responses of Al2O3 tubes were investigated for various loading paths under combined tension/torsion. The fracture criterion did not depend on loading paths. Fracture angles agreed well with the maximum tensile stress criterion. As the loading condition approaches a shear dominant state, the tensile principal stress at fracture increases compared to the uniaxial fracture strength. By using the Weibull modulus obtained from tension and torsion tests, the Weibull statistical fracture strengths were compared with experimental data. This comparison suggests that fracture may occur at the surface of the specimen when tensile stress is dominant, but within the volume of the specimen when shear stress is dominant. The Weibull fracture strength increased as the loading conition approached a shear dominant state, but underestimated compared to experimental data. Finally, a new fracture criterion was proposed by including the effect of compressive principal stress. The proposed criterion agreed well with experimental data of Al2O3 tubes not only at combined tension/torsion but also at balanced biaxial tension.

  • PDF

알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동 (Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion)

  • 김기태;서정;조윤호
    • 한국세라믹학회지
    • /
    • 제28권1호
    • /
    • pp.20-28
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test($\tau$/$\sigma$= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio $\tau$/$\sigma$. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.

  • PDF

CONTAINMENT PERFORMANCE EVALUATION OF PRESTRESSED CONCRETE CONTAINMENT VESSELS WITH FIBER REINFORCEMENT

  • CHOUN, YOUNG-SUN;PARK, HYUNG-KUI
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.884-894
    • /
    • 2015
  • Background: Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. Methods: The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. Results: For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. Conclusion: The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcementwas shown to bemore effective at a high pressure loading and a lowprestress level.

직접인장방법에 의한 SBR 폴리머 개질 콘크리트의 부착강도 특성 평가 (Evaluation For Adhesion in Tension of SBR Polymer Modified Concrete Tensile by Uniaxial Method)

  • 윤경구;장흥균;이남주;이승재;홍창우
    • 한국도로학회논문집
    • /
    • 제3권4호
    • /
    • pp.117-126
    • /
    • 2001
  • 본 연구는 일반 콘크리트와 SBR 라텍스 개질 콘크리트의 부착강도 특성을 분석하고자 신 구 콘크리트로 구성된 직접인장 시험체를 제작하여 부착강도를 측정하였다. 이때, 시험체와 측정기의 연결장치가 $360^{\circ}$ 회전이 가능하도록 시험장비를 개선하여 시험체의 편심이 부착강도 측정에 미치는 영향을 최소화였다. 주요 실험변수로는 라텍스 혼입율, 표면 처리상태, 표면 함수상태로 정하였으며 실험결과는 다음과 같다; 라텍스 혼입률이 증가함에 따라 부착강도도 증가하였으며, 혼입률 15%에서 37%의 증진을 보였다. 이것은 라텍스가 골재와 시멘트 페이스트 사이에 충전되어 필름 막을 형성하고 부착력을 증진시켰기 때문인 것으로 판단된다. 표면처리에 따라 부착강도의 변화를 고찰한 결과, 샌드 그라인딩과 와이어 부러쉬에 의해 표면처리를 하였을 경우 부착강도는 단순 절단한 경우보다 약 49% 증가하였다. 표면함수 상태에 따른 영향을 고찰한 결과, 부착강도는 기존 콘크리트 표면이 건조하였을 경우에 가장 작게 나타났고, 자유수가 표면에 있을 때가 그 다음을 나타냈으며, 표면건조포화상태에선 37% 증가하여 가장 크게 나타났다. 따라서 부착강도를 증진시키기 위해서는 적절한 표면처리와 표면함수상태의 유지가 필수적임을 알 수 있었다.

  • PDF

철근(鐵筋)콘크리트 구조물(構造物)의 비선형(非線型) 해석(解析)에 관한 연구(硏究) (A Study on Nonlinear Analysis of Reinforced Concrete Structures)

  • 장동일;곽계환
    • 대한토목학회논문집
    • /
    • 제7권2호
    • /
    • pp.69-77
    • /
    • 1987
  • 철근 콘크리트 구조물의 재료적 비선형 해석을 위해 유한요소법을 적용하였다. 2 축응력 상태에서의 콘크리트 거동은 인장균열과 균열사이의 인장증강효과(tension stiffening effect) 그리고 최대압축 강도를 넘어서의 변형연화(strain-softening) 효과를 고려하는 비선형 구성 방정식으로 나타냈다. 콘크리트를 직교성 (orthotropic) 재료로 가정함으로써 비선형 탄성체로 간주하고, 등가일축변형도 개념을 사용한 등가 일축 응력-변형도(equivalent uniaxial stress-strain) 관계식으로 모형화하고, 철근 보강재는 Bauschinger 효과를 갖는 탄소성 변형 경화재료(elasto-plastic strain-hardening material)로 모형화 했다. 평면 응력 상태에서 철근콘크리트 보의 모형화는 각 절점에 2 개의 자유도를 갖는 사각형요소로 모형화하여 적용 시쳤으며, 이로부터 구한 유한요소해석의 결과치를 실험결과치의 중앙처짐, 응력, 변형율 그리고 균열성장과정에 대하여 비교 검토 하였다.

  • PDF

Determination of representative volume element in concrete under tensile deformation

  • Skarzyski, L.;Tejchman, J.
    • Computers and Concrete
    • /
    • 제9권1호
    • /
    • pp.35-50
    • /
    • 2012
  • The 2D representative volume element (RVE) for softening quasi-brittle materials like concrete is determined. Two alternative methods are presented to determine a size of RVE in concrete subjected to uniaxial tension by taking into account strain localization. Concrete is described as a heterogeneous three-phase material composed of aggregate, cement matrix and bond. The plane strain FE calculations of strain localization at meso-scale are carried out with an isotropic damage model with non-local softening.

순환형 폐기물이 혼입된 ECC의 섬유 분산성 평가 (Evaluation of Fiber Dispersion of ECC Incorporated by Recycled Mineral Wastes)

  • 김윤용;박준형;현정환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.381-382
    • /
    • 2010
  • ECC의 우수한 인장 성능은 섬유가 매트릭스의 균열 면에서 가교작용을 함으로써 발현되기 때문에 섬유의 분산성이 복합재료의 성능에 결정적인 영향을 미치게 된다. 따라서 순환형 폐기물이 혼입된 ECC의 인장 거동을 보다 정확히 예측하기 위하여 섬유의 분산성을 평가하였다.

  • PDF

Influence of elastic T-stress on the growth direction of two parallel cracks

  • Li, X.F.;Tang, B.Q.;Peng, X.L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • 제34권3호
    • /
    • pp.377-390
    • /
    • 2010
  • This paper studies fracture initiation direction of two parallel non-coplanar cracks of equal length. Using the dislocation pile-up modelling, singular integral equations for two parallel cracks subjected to mixed-mode loading are derived and the crack-tip field including singular and non-singular terms is obtained. The kinking angle is determined by using the maximum hoop stress criterion, or the ${\sigma}_{\theta}$-criterion. Results are presented for simple uniaxial tension and biaxial loading. The biaxiality ratio has a noticeable influence on crack growth direction. For the case of biaxial tension, when neglecting the T-stress the crack branching angle is overestimated for small crack inclination angles relative to the largest applied principal stress direction, and underestimated for large crack inclination angles.