• Title/Summary/Keyword: Uniaxial Tensile Test

Search Result 232, Processing Time 0.025 seconds

Development of Simple Construction Method for Curbs and L-Type Gutter (경계석과 L형 측구의 간편 시공법 개발)

  • Paik, Kyu Ho;Shin, Young Ok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.961-968
    • /
    • 2006
  • Curbs and L-type gutters installed at the edge of a road are very important structures to protect pedestrians from traffic accidents and to restraint slip of cars due to rain. However, existing construction method where great parts of the construction progress are done by human power has many problems in workability, quality and cost etc. In this paper, a new construction method for improvement in workability and quality for curbs and L-type gutters is developed. In order to investigate the structural safety and quality of curbs and gutters installed by the new method, tensile and lateral load tests are performed on curbs installed by existing and new methods and uniaxial compression tests are also performed on concrete samples of gutters constructed by existing and new methods. The test results show that the alignment of curbs and the strength of gutter concrete are very much improved by applying the new method. The tensile and lateral load capacities of the curbs installed by the new method are 10.7 and 2.5 times higher than those of curbs by existing method, respectively.

Evaluation of electromechanical properties in REBCO CC tapes under transverse compression using anvil test method

  • Diaz, Mark Angelo;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.57-61
    • /
    • 2022
  • One of the major applications of REBCO coated conductor (CC) tapes is in superconducting magnets or coils that are designed for high magnet fields. For such applications, the CC tapes were exposed to a high level of stresses which includes uniaxial tensile or transverse compressive stresses resulting from a large magnetic field. Thus, CC tapes should endure such mechanical load or deformation that can influence their electromechanical performance during manufacturing, cool-down, and operation. It has been reported that the main cause of critical current (Ic) degradation in CC tapes utilized in coil windings for superconducting magnets was the delamination due to transversely applied stresses. In most high-magnetic-field applications, the operating limits of the CC tapes will likely be imposed by the electromechanical properties together with its Ic dependence on temperature and magnetic field. In this study, we examined the influence of the transverse compressive stress on the Ic degradation behaviors in various commercially available CC tapes which is important for magnet design Four differently processed REBCO CC tapes were adopted to examine their Ic degradation behaviors under transverse compression using an anvil test method and a newly developed instantaneous Ic measurement system. As a result, all REBCO CC tapes adopted showed robustness against transverse compressive stresses for REBCO coils, notably at transverse compressive stresses until 250 MPa. When the applied stress further increased, different Ic degradation behaviors were observed depending on the sample. Among them, the one that was fabricated by the IBAD/MOCVD process showed the highest compressive stress tolerance.

An Experimental Study of the King Sejong Station and Siberian Frozen Soils (세종기지 및 시베리아 흙의 동결특성 시험)

  • Kim, Youngchin;Shin, Jaewon;Son, Seungmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.5-12
    • /
    • 2009
  • Soil samples from the King Sejong Station in Antarctic and Vladivostok were tested in the laboratory and specific gravity, compaction curve, grain size distribution were determined. The effect of temperature change on the thermal conductivity, unfrozen water content, compressive strength were investigated. In addition, the change of tensile strength with temperature of the soil from Vladivostok was measured. Samples for the compressive strength test and tensional strength test were prepared in a mould with a fixed volume to prevent swelling. Also the effects of temperature and water content change on those strength were compared. Results from the thermal conductivity test showed that thermal conductivity values for both soils was larger at temperatures below freezing than those above freezing. The unfrozen water content dropped rapidly within a temperature range of $0{\sim}-5^{\circ}C$ and then gradually decreased further $-20^{\circ}C$. Compressive strength test results showed various stress/deformation curves with a change in water content. Sandy soil of the King Sejong Station had a much larger strength than ice at an identical temperature, while clayey soil of Vladivostok had a smaller strength than ice in the initial stage, but showed a larger strength at temperatures belows $-15^{\circ}C$. Tensile strength tests revealed an increase in the strength with a decreasing temperature.

  • PDF

Estimation of Local Strain Distribution of Shear-Compressive Failure Type Beam Using Digital Image Processing Technology (화상계측기법에 의한 전단압축파괴형 보의 국부변형률분포 추정)

  • Kwon, Yong-Gil;Han, Sang-Hoon;Hong, Ki-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The failure behavior of RC structure was exceedingly affected by the size and the local strain distribution of the failure zone due to the strain localization behavior on the tension softening materials. However, it is very difficult to quantify and assess the local strain occurring in the failure zone by the conventional test method. In this study, image processing technology, which is available to measure the strain up to the complete failure of RC structures, was used to estimate the local strain distribution and the size of failure zone. In order to verify the reliability and validity for the image processing technology, the strain transition acquired by the image processing technology was compared with strain values measured by the concrete gauge on the uniaxial compressive specimens. Based on the verification of image processing technology for the uniaxial compressive specimens, the size and the local strain distribution of the failure zone of deep beam was measured using the image processing technology. With the results of test, the principal tensile/compressive strain contours were drawn. Using the strain contours, the size of the failure zone and the local strain distribution on the failure of the deep beam was evaluated. The results of strain contour showed that image processing technology is available to assess the failure behavior of deep beam and obtain the local strain values on the domain of the post-peak failure comparatively.

A Study on the Development of Large Aluminum Flange Using Casting/Forging Process (주조/단조 기술을 이용한 대형 알루미늄 플랜지 개발에 관한 연구)

  • Bae, Won-Byeong;Wang, Sin-Il;Seo, Myeong-Gyu;Jo, Jong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1438-1443
    • /
    • 2001
  • The significance of the casting/forging process for reducing the production cost of large components is being noted in these days. This casting/forging process is a method of forging a workpiece preformed by casting into the final shape. In this study, the casting/forging process has been applied in manufacturing a large aluminum flange in order to reduce press capacity and material cost. Firstly, a hot compression test was performed with cast cylindrical billets in order to determine the optimum forging condition of the aluminum flange. The optimum range of forging temperature of Al 5083 was from 420$\^{C}$ to 450$\^{C}$. The suitable strain rate was 1.5 sec(sup)-1. The deformation amount of a preform of a preform in a forging process is a key role in the mechanical properties of casting/forging products. In order to find the change of mechanical properties according to effective stain of cast aluminum billets, a hot upsetting test were performed with rectangular blocks and then a uniaxial tensile test was performed with specimens cut from the upsetted billets. The tensile strength and the elongation of cast/upsetted aluminum billets were increased largely until the effective strain was 0.7. FE analysis was performed to determine the configurations of case preform and die for an aluminum flange. In the FE analysis, the forging load-limit was fixed 1500ton for low equipment cost. The cast preform was designed so that the effective stain around the neck of a flange exceeded 0.7. From the result of FE analysis, optimal configurations of the cast preform and the die were designed for a large flange. The filling and solidification analysis for a sound cast-preform was carried out with MAGMA soft. In the forging experiment for an aluminum flange, it was confirmed that the optimal configuration of the cast preform predicted by FE analysis was very useful. The cast/forged products using designed preform were made perfectly without any defects.

Measurement of Fiber Board Poisson's Ratio using High-Speed Digital Camera

  • Choi, Seung-Ryul;Choi, Dong-Soo;Oh, Sung-Sik;Park, Suk-Ho;Kim, Jin-Se;Chun, Ho-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.324-329
    • /
    • 2014
  • Purpose: The finite element method (FEM) is advantageous because it can save time and cost by reducing the number of samples and experiments in the effort to identify design factors. In computational problem-solving it is necessary that the exact material properties are input for achieving a reliable analysis. However, in the case of fiber boards, it is difficult to measure their cross-directional material properties because of their small thickness. In previous research studies, the Poisson's ratio was measured by analyzing ultrasonic wave velocities. Recently, the Poisson's ratio was measured using a high-speed digital camera. In this study, we measured the transverse strain of a fiber board and calculated its Poisson's ratio using a high-speed digital camera in order to apply these estimates to a FEM analysis of a fiber board, a corrugated board, and a corrugated box. Methods: Three different fiber board samples were used in a uniaxial tensile test. The longitudinal strain was measured using the Universal Testing Machine. The transverse strain was measured using an image processing method. To calculate the transverse strain, we acquired images of the fiber board before the test onset and before the fracture occurred. Acquired images were processed using the image processing program MATLAB. After the images were converted from color to binary, we calculated the width of the fiber board. Results: The calculated Poisson's ratio ranged between 0.2968-0.4425 (Machine direction, MD) and 0.1619-0.1751 (Cross machine direction, CD). Conclusions: This study demonstrates that measurement of the transverse properties of a fiber board is possible using image processing methods. Correspondingly, these processing methods could be used to measure material properties that are difficult to measure using conventional measuring methodologies that employ strain gauge extensometers.

Development and Evaluation of Polymer-Modified Asphalt Emulsions Used for Tack Coats (택코트용 폴리머 개질 유화아스팔트 개발 및 성능 평가)

  • Kim, Yeong Min;Im, Jeong Hyuk;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSES: The objectives of this study were to develop a new polymer-modified emulsion for application to tack coats and to evaluate its properties by comparing it with other types of asphalt emulsions, with the goal of providing an enhanced tack coat material for use in construction. METHODS: Modified asphalt binders were developed from using SBS and SBR latex in the laboratory, and their fundamental properties, such as their penetration index and PG grade, were evaluated. Based on the properties, a new tack coat material was developed. To evaluate the newly developed asphalt emulsion, the bonding strength between the two layers of HMA was measured by applying a uniaxial tensile test and shear test. For the tests, a total of four different conditions were applied to the specimens, including the developed asphalt emulsion, latex modified asphalt emulsion, conventional asphalt emulsion, and non-tack coating. RESULTS AND CONCLUSIONS: Overall, the developed asphalt emulsion exhibits the best bonding strength behavior among all of the three types. Also, the two types of polymer-modified emulsions were found to be better for application for use as a tack coat than a conventional emulsion. Especially, at a high temperature ($50^{\circ}C$), the conventional asphalt emulsion no longer acts as a tack coating material. Therefore, the polymer-modified emulsion should be considered for application to tack coat construction during the summer.

A Study on the Variation of Temperature and the Deformation Characteristics in Asphaltic Concrete Pavement by Air Temperature (대기온도(大氣溫度)에 따른 아스팔트포장(鋪裝) 내부(內部) 온도변화(溫度變化)와 변형특성(變形特性)에 관(關)한 연구(硏究))

  • Kang, Min Soo;Kim, Soo Sam;Lee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1115-1128
    • /
    • 1994
  • The condition of temperature gradients in asphaltic concrete (Ascon) pavement have been analyzed based on the data collected from 5 major sites in Korea. From this. considering heat transfer by insolation flux and air temperature within pavement slab. temperature variation on the surface of pavement was computed and numerical model using the theory of thermal conductivity was applied to estimate the temperature gradients in depth. To investigate the present condition of asphalt generally used in Korea. the asphalt property tests were applicated on 5 different AP-3 (AC 85~100), and AP-5 (AC 60~70) asphalts classified by penetration index. Uniaxial compression test and indirect tensile test were also carried out for varying temperature conditions to analyze the effect of temperature on the deformation characteristics of Ascon pavement by calculating the variation of static elastic modulus and layer coefficients.

  • PDF

Assessment of Yield Characteristics of Gas Pipeline Materials by Observing Surface-Local Deformation (미소 표면변형 관찰을 통한 가스배관 부재의 항복특성 평가)

  • Lee, Yun-Hee;Baek, Un-Bong;Cheong, In-Hyeon;Nahm, Seung-Hoon;Lee, Sang-Houck
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.92-98
    • /
    • 2008
  • A combination of the instrumented indentation and 3D morphology measurement has been tried in order to perform a real-time property measurement of degraded materials in gas pipelines; three-dimensional indent morphologies were recorded using a reflective laser scanner after a series of insturmented indentations on three metallic specimens. Dimensions of the permanent deformation zone and contact boundary were analyzed from the cross-sectional profile over an remnant indent and used for estimating yield strength and hardness, respectively. Estimated yield strength was comparable with that from uniaxial tensile test and actual hardness implying material pile-up effects was lower than the calculated value from indentation curve by $20{\sim}30%$. It means that this 3D image analysis can explain the material pile-up effects on the contact properties. Additionally, a combined system of indentation and laser sensor was newly designed by modifying a shape of the indentation loading fixture.

  • PDF

Predicting rock brittleness indices from simple laboratory test results using some machine learning methods

  • Davood Fereidooni;Zohre Karimi
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.697-726
    • /
    • 2023
  • Brittleness as an important property of rock plays a crucial role both in the failure process of intact rock and rock mass response to excavation in engineering geological and geotechnical projects. Generally, rock brittleness indices are calculated from the mechanical properties of rocks such as uniaxial compressive strength, tensile strength and modulus of elasticity. These properties are generally determined from complicated, expensive and time-consuming tests in laboratory. For this reason, in the present research, an attempt has been made to predict the rock brittleness indices from simple, inexpensive, and quick laboratory test results namely dry unit weight, porosity, slake-durability index, P-wave velocity, Schmidt rebound hardness, and point load strength index using multiple linear regression, exponential regression, support vector machine (SVM) with various kernels, generating fuzzy inference system, and regression tree ensemble (RTE) with boosting framework. So, this could be considered as an innovation for the present research. For this purpose, the number of 39 rock samples including five igneous, twenty-six sedimentary, and eight metamorphic were collected from different regions of Iran. Mineralogical, physical and mechanical properties as well as five well known rock brittleness indices (i.e., B1, B2, B3, B4, and B5) were measured for the selected rock samples before application of the above-mentioned machine learning techniques. The performance of the developed models was evaluated based on several statistical metrics such as mean square error, relative absolute error, root relative absolute error, determination coefficients, variance account for, mean absolute percentage error and standard deviation of the error. The comparison of the obtained results revealed that among the studied methods, SVM is the most suitable one for predicting B1, B2 and B5, while RTE predicts B3 and B4 better than other methods.