• 제목/요약/키워드: Uniaxial Tensile Test

검색결과 232건 처리시간 0.03초

DETERMINATION OF FRACTURE TOUGHNESS BY UNIAXIAL TENSILE TEST

  • Oh, Hung-Kuk
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1994년도 춘계 학술발표 강연 및 논문 개요집
    • /
    • pp.2-7
    • /
    • 1994
  • The dynamic fatigue life equation is applied to uniaxial tensile test. The resultant equations far the surface energy and fracture toughness are calculated with the data from the tensile test and compared with the ones from ASTM E399 test. During the crack propagation under model loading, the material of the crack tip undergoes the process of the elastic-plastic deformation in the uniaxial tensile test. The surface energy per unit area is proportional to the ratio of plastic and elastic elongations. The calculated fracture toughness of the metals are very well coincident to the ASTM E399's test results.

  • PDF

Uniaxial tensile test integrated design considering mould-fixture for UHPC

  • Zhang, Xiaochen;Shen, Chao;Zhang, Xuesen;Wu, Xiangguo;Faqiang, Qiu;Mitobaba, Josue G.
    • Advances in Computational Design
    • /
    • 제7권4호
    • /
    • pp.281-295
    • /
    • 2022
  • Tensile property is one of the excellent properties of ultra-high performance concrete (UHPC), and uniaxial tensile test is an important and challenging mechanical performance test of UHPC. Traditional uniaxial tensile tests of concrete materials have inherent defects such as initial eccentricity, which often lead to cracks and failure in non-test zone, and affect the testing accuracy of tensile properties of materials. In this paper, an original integrated design scheme of mould and end fixture is proposed, which achieves seamless matching between the tension end of specimen and the test fixture, and minimizes the cumulative eccentricity caused by the difference in the matching between the tension end of specimen and the local stress concentration at the end. The stress analysis and optimization design are carried out by finite element method. The curve transition in the end of specimen is preferred compared to straight line transition. The rationality of the new integrated design is verified by uniaxial tensile test of strain hardening UHPC, in which the whole stress-strain curve was measured, including the elastic behavior before cracking,strain hardening behavior after cracking and strain softening behavior.

DETERMINATION OF RUPTURE TIME AND STRAIN RATE IN CREEP BY UNIAXIAL TENSILE TEST

  • Oh, Hung-Kuk
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 추계학술대회 논문집
    • /
    • pp.74-79
    • /
    • 1994
  • The log-log presentation of stress versus Larson-Miller parameter is obtained by uniaxial tensile test instead of the long time creep test. The used material for example calculations is SUS304 stainless steel. The temperature of the uniaxial tensile test can be determined by the Larson-Miller parameter of the design stress and the 0.1hr's rupture time of the uniaxial tensile test. The rupture time at the design temperature and stress can be determined by the Larson-Miller parameter of the stress. The average creep rate is the total deformation of the tensile test divided by the rupture time at the design stress and temperature. The liner trend and the order of the data of the average creep rate by this method is almost same as that of experimental results.

  • PDF

전산해석을 통한 고무전단강성 예측 (Rubber Shear Modulus Prediction of Finite Element Method)

  • 권태훈;김병훈;노태호;이원복;조인현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.189-192
    • /
    • 2007
  • 고무제품의 경우 구조성능평가를 위해 단축인장, 순수전단, 이축인장 및 압축시험을 수행한다. 일반적으로 단축인장시험값을 기초물성으로 사용하며 용도에 따라 다른 시험을 수행한다. 검증을 위해 단축인장시험/해석 결과를 비교하여 타당성을 확인했다. 본 연구에서는 전단강성이 주요인자인 제품의 성능평가를 위해 단축인장시험에서 획득한 물성을 적용한 QLS 해석모델의 결과를 비교, 검증하였다.

  • PDF

Experimental study on the tensile strength of gravelly soil with different gravel content

  • Ji, Enyue;Chen, Shengshui;Zhu, Jungao;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.271-278
    • /
    • 2019
  • In recent years, the crack accidents of earth and rockfill dams occur frequently. It is urgent to study the tensile strength and tensile failure mechanism of the gravelly soil in the core for the anti-crack design of the actual high earth core rockfill dam. Based on the self-developed uniaxial tensile test device, a series of uniaxial tensile test was carried out on gravelly soil with different gravel content. The compaction test shows a good linear relationship between the optimum water content and gravel content, and the relation curve of optimum water content versus maximum dry density can be fitting by two times polynomial. For the gravelly soil under its optimum water content and maximum dry density, as the gravel content increased from 0% to 50%, the tensile strength of specimens decreased from 122.6 kPa to 49.8 kPa linearly. The peak tensile strain and ultimate tensile strain all decrease with the increase of the gravel content. From the analysis of fracture energy, it is proved that the tensile capacity of gravelly soil decreases slightly with the increasing gravel content. In the case that the sample under the maximum dry density and the water content higher than the optimum water content, the comprehensive tensile capacity of the sample is the strongest. The relevant test results can provide support for the anti-crack design of the high earth core rockfill dam.

시험편 형상에 따른 ETFE 필름재의 인장 특성 (Tensile Characteristics of ETFE Film According to the Specimen Type)

  • 김승덕;주석범;장명호;이정현
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.159-165
    • /
    • 2017
  • In this paper, uniaxial tensile tests of ETFE films with three kinds of thicknesses(100, 200, $250{\mu}m$) and two kinds of directions(machine direction & transverse direction) are performed and the tensile strength, the tensile strain at break and the Young's modulus of ETFE films are compared for two kinds of specimen types(2 & 5). It could be figured out that there are no significant difference between tensile strengths of two specimen types but the tensile strain at break and the Young's modulus of ETFE films are affected by the specimen types. And it is concluded that the uniaxial tensile test of specimen type 2 are more reliable than that of specimen type 5.

인두조직의 점 탄성특성의 수학적모델링에 관한 연구 (A Study on the Mathematical Modeling of Human Pharyngeal Tissue Viscoelasticity)

  • 김성민;김남현
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권5호
    • /
    • pp.495-502
    • /
    • 1998
  • Y.C. Fung[1]에 의한 연조직의 점탄성에 관한 수학적 모델이론 (Fung's Quasi-linear vlscoelastic theory)을 이용하여 인간의 인두조직의 점탄성(vlscoelatlcity)특성을 측정하기 위하여 반복성하중(cyclic load) ,응력완화 (tensile stress relaxation), incremental load, 그리고 일축성인장 (uniaxial tensile) 시험 등을 실시하였다. 실험적으로 측정한 인두조직의 점탄성특성이 이미 조사된 다른 조직의 점탄성특성과 정량적으로 비교되었다. 인두조직의 점탄성특성의 정량화를 위하여 Y.C.Fung의 수학적 모델이 적용되었는데 응력완화(tensile stress relaxation) 시험 측정결과로부터 도출된 표준화된 응력완화(reduced stress relaxation)함수 G(t)와 일축성인장(uniaxial tensile)시험에서 도출된 탄성반응(elastic response)함수 5(t)를 이용하여 시간에 따른 응력의 궤적을 산출하여 이를 반복성 하중(cyclic load)실험에서 측정된 결과와 비교, 분석하였다. 이러한 인두조직의 점탄성특성에 관한 연구결과는 향후 유한요소를 이용한 인두의 생체역학적 모델의 기본 데이터로 이용될 수 있다.

  • PDF

HPFRCC Beam 부재의 전단거동에 관한 실험적 연구 (Experimental Study on Shear Behavior of HPFRCC Beam)

  • 송태화;이성철;신경준;장승필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.289-292
    • /
    • 2006
  • In this research, bending shear test of HPFRCC beams is conducted to obtain the shear strength of HPFRCC beams. Parameters are ratio of volume percentage of fibers. Also, the uniaxial tensile test of HPFRCC is conducted to obtain the tensile cracking stress of each parameters. From the uniaxial tensile test result, the shear strength of HPFRCC beams can be calculated by using the preexisting shear analysis model. Then, the shear strengths of bending shear test result and analysis result are compared.

  • PDF

Estimation of rock tensile and compressive moduli with Brazilian disc test

  • Wei, Jiong;Niu, Leilei;Song, Jae-Joon;Xie, Linmao
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.353-360
    • /
    • 2019
  • The elastic modulus is an important parameter to characterize the property of rock. It is common knowledge that the strengths of rocks are significantly different under tension and compression. However, little attention has been paid to the bi-modularity of rock. To validate whether the rock elastic moduli in tension and compression are the same, Brazilian disc, direct tension and compression tests were conducted. A horizontal laser displacement meter and a pair of vertical and transverse strain gauges were applied. Four types of materials were tested, including three types of rock materials and one type of steel material. A comprehensive comparison of the elastic moduli based on different experimental results was presented, and a tension-compression anisotropy model was proposed to explain the experimental results. The results from this study indicate that the rock elastic modulus is different under tension and compression. The ratio of the rock elastic moduli under compression and tension ranges from 2 to 4. The rock tensile moduli from the strain data and displacement data are approximate. The elastic moduli from the Brazilian disc test are consistent with those from the uniaxial tension and compression tests. The Brazilian disc test is a convenient method for estimating the tensile and compressive moduli of rock materials.

AZ31 마그네슘 합금판재의 소성변형특성 (Plastic Deformation Characteristic of AZ31 Magnesium alloy Sheet)

  • 박진기;김영석;;유봉선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.64-68
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile test of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile test were performed until $7\%$ of engineering strain. R-values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci are made by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5\%$ of equivalent strain at biaxial tensile test.

  • PDF