• Title/Summary/Keyword: Uni-axial Test

Search Result 67, Processing Time 0.041 seconds

Size Effect of Concrete Structures without Initial Cracks (초기균열이 없는 콘크리트 구조물의 크기에 따른 응력감소효과에 관한 연구)

  • Kim, Jin Keun;Park, Hong Kyee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.29-36
    • /
    • 1987
  • In most of the structural members with initial cracks, the strength tends to decrease as the member size increases. This phenomenon is known as size effect. Among the structural materials of glass, metal or concrete, etc., concrete represents the size effect even without initial crack. According to the previous size effect law, the concrete member of very large size can resist little stress. Actually, however, even the large size member can resist some stress if there is no initial notch. This means that the fracture mechanism of very small or very large size member follows strength criterion, but the medium size member follows non-linear fracture mechanics (NLFM). In this study, the empirical models which are derived based on nonlinear fracture mechanics are proposed according to the regression analysis with the existing test data of large size specimens for uni-axial compression test, splitting tensile test and shear test of reinforced concrete beams.

  • PDF

Validation Study on Processing Grip Part of Tensile Specimen Acquired from Corroded Pipeline (부식이 존재하는 기존 노후 관로에서 인장 시편 가공 시 그립 가공 타당성에 대한 연구)

  • Nam, Young Jun;Kim, Jeong Hyun;Bae, Cheol Ho;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.191-195
    • /
    • 2020
  • In this work, tensile tests, one of the most common test method to assess the condition of a corroded pipe, were conducted. According to ASTM E8 method, the use of flat or curved uni-axial tension test is allowed under the recommendation with the usage of grips corresponding to a curvature of the pipe. However, this method is not for corroded specimen. Furthermore, in the case of performing the multiple tensile tests with various curvatures, it is desirable not to produce zigs that fit each curvatures, if merely processing the specimen grip with curvature into the flat grip can show almost identical tensile behavior. Therefore, various tension simulations were conducted first to check if there exist any differences. Also, experiments on corroded tensile specimen were conducted and compared with the FEM simulation that reflects the actual geometry acquired from the 3D scanner.

Mechanical Behaviour of Bio-grouted Coarse-grained Soil: Discrete Element Modelling

  • Wu, Chuangzhou;Jang, Bo-An;Jang, Hyun-Sic
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.383-391
    • /
    • 2019
  • Bio-grouting based on microbial-induced calcite precipitation (MICP) is recently emerging as a novel and environmentally friendly technique for improvement of coarse-grained ground. To date, the mechanical behaviour of bio-grouted coarse-grained soil with different calcite contents and grain sizes still remains poorly understood. The primary objective of this study is to investigate the influence of calcite content on the mechanical properties of bio-grouted coarse-grained soil with different grain sizes. This is achieved through an integrated study of uniaxial loading experiments of bio-grouted coarse-grained soil, 3D digitization of the grains in conjunction with discrete element modelling (DEM). In the DEM model, aggregates were represented by clump logic based on the 3D morphology digitization of the typical coarse-grained aggregates while the CaCO3 was represented by small-sized bonded particle model. The computed stress-strain relations and failure patterns of the bio-grouted coarse-grained soil were validated against the measured results. Both experimental and numerical investigation suggest that aggregate sizes and calcite content significantly influence the mechanical behaviour of bio-cemented aggregates. The strength of the bio-grouted coarse-grained soil increases linearly with calcite content, but decreases non-linearly with the increasing particle size for all calcite contents. The experimental-based DEM approach developed in this study also offers an optional avenue for the exploring of micro-mechanisms contributing to the mechanical response of bio-grouted coarse-grained soils.

Application of Ultrasonic Technique for Early-Aged PC Beams in Field (초음파 탐사법의 긴장 전 PC보에 대한 현장적용)

  • Lee, Jun-Ki;Park, Sung-Woo;Yoon, Jung-Sup;Park, Chul-Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.589-592
    • /
    • 2008
  • Recently, as importance of quality control of the structure has been recognized, non-destructive testing, determining quality of the structure without damage, has been widely applied. However, its application has been primarily focused on laboratory development because variety of parameters in field has been not fully experienced and understood. This study aims to evaluate the field applicability of the ultrasonic testing method for PC beams. Material properties of 18 cylinders, cured in the same field condition, were measured up to 60 days and compared to those of the ultrasonic measurements from 34 PC beams in field before tensioning. Test results indicate that uni-axial strength and elastic modulus of PC beams can be predicted within reasonable range using the ultrasonic technique. However, it is also noted that considerations on field condition is required to increase the reliability of estimation.

  • PDF

Prediction of Material Behavior and Failure of Fresh Water Ice Based on Viscoplastic-Damage Model (점소성 손상모델 기반 담수빙 재료거동 및 파손 예측)

  • Choi, Hye-Yeon;Lee, Chi-Seung;Lee, Jong-Won;Ahn, Jae-Woo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.275-280
    • /
    • 2011
  • In the present study, a unified viscoplastic-damage model has been applied in order to describe the mechanical characteristics of fresh water ice such as nonlinear material behavior and volume fraction. The strain softening phenomenon of fresh water ice under quasi-static compressive loading has been evaluated based on unified viscoplastic model. The material degradation such as growth of slip/fraction has quite close relation with material inside damage. The volume fraction phenomenon of fresh water ice has been identified based on volume fraction (nucleation and growth of damage) model. The viscoplastic-damage model has been transformed to the fully implicit formulation and the discretized formulation has been implemented to ABAQUS user defined subroutine (User MATerial: UMAT) for the benefit of application of commercial finite element program. The proposed computational analysis method has been compared to uni-axial compression test of fresh water ice in order to validate the compatibilities, clarities and usefulness.

Statistical reference values for control performance assessment of seismic shake table testing

  • Chen, Pei-Ching;Kek, Meng-Kwee;Hu, Yu-Wei;Lai, Chin-Ta
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.595-603
    • /
    • 2018
  • Shake table testing has been regarded as one of the most effective experimental approaches to evaluate seismic response of structural systems subjected to earthquakes. However, reproducing a prescribed acceleration time history precisely over the frequency of interest is challenging because shake table test systems are eventually nonlinear by nature. In addition, interaction between the table and specimen could affect the control accuracy of shake table testing significantly. Various novel control algorithms have been proposed to improve the control accuracy of shake table testing; however, reference values for control performance assessment remain rare. In this study, reference values for control performance assessment of shake table testing are specified based on the statistical analyses of 1,209 experimental data provided by the Seismic Simulator Laboratory of National Center for Research on Earthquake Engineering in Taiwan. Three individual reference values are considered for the assessment including the root-mean-square error of the achieved acceleration time history; the percentage of the spectral acceleration that exceeds the determined tolerance range over the frequency of interest; and the error-ratio of the achieved peak ground acceleration. Quartiles of the real experimental data in terms of the three objective variables are obtained, providing users with solid and simple references to evaluate the control performance of shake table testing. Finally, a set of experimental data of a newly developed control framework implementation for uni-axial shake tables are used as an application example to demonstrate the significant improvement of control accuracy according to the reference values provided in this study.

Analysis of Dynamic and Static Elastic Modulus of In-situ Marine Concrete (현장 해양 콘크리트의 동탄성계수와 정탄성계수 분석)

  • Han, Sang-Hun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.437-443
    • /
    • 2009
  • Impact echo method estimating the soundness of concrete measures the dynamic elastic modulus of specimens which are different with static elastic modulus tested by uni-axial compression test. Thus, this paper investigates the relationships between dynamic and static elastic modulus based on in-situ concrete cores. Also, dynamic elastic modulus was compared with compressive strength. Concrete cores were obtained from about 20 to 70 years concrete structures at three different harbors which were Incheon, Wando, and Masan in Korea. In order to investigate the influence of exposure condition on the relationship, air zone, splash zone, and tidal zone were selected. Different harbors showed the different relationships between dynamic and static elastic modulus, but exposure conditions have no influence on the relationship between dynamic and static elastic modulus. Also, the relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus. The relationship equations were proposed to estimate the relationships properly.