• 제목/요약/키워드: Ungaged basin

검색결과 49건 처리시간 0.029초

기저유량비를 이용한 미계측 유역의 평균 갈수량 산정 (Estimation of Average Low Flow Using Base Flow Index for Ungaged Basin)

  • 이시윤;김치영;이종소;김형수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.415-420
    • /
    • 2017
  • 유량자료는 연속적으로 관측하기가 쉽지 않을 뿐 아니라 모든 관측소에서 매년 적정한 유량자료를 생산하는 것 또한 매우 어려운 실정이다. 이에 따라 미계측 유역에 대한 유량 산정을 위해 많은 연구가 진행되고 있다. 영국의 "Low Flow Studies report(Institute of Hydrology, 1980)"에서는 갈수량 산정과 관련하여 기저유량비(Base Flow Index, BFI)를 사용하는 것을 추천하였다. 국내에서는 이와 관련한 적용 사례가 없기 때문에 본 연구에서는 BFI를 적용하여 미계측 유역의 갈수량을 산정하고자 하였다. 대상유역은 낙동강 권역의 22개 지점을 대상으로 실시하였으며, 기저유량비 및 평균 갈수량과 유역 및 수문인자들의 상관분석을 수행하였다. 분석을 통하여 기저유량비는 토양군 C와 지하수위를 독립변수로, 평균 갈수량은 기저유량비, 유역면적, 강수량을 독립변수로 선정하여 회귀분석을 실시하였다. 그 결과 개발한 기저유량비 지역회귀모형의 상대오차는 -26.5%(기계2)~57.2%(구영)의 범위로 분포하였고, 절대오차의 평균은 17.2%로 산정되었다. 평균 갈수량 지역회귀모형은 상대오차가 -38.4%(도천)~184.4%(길안)의 범위에서 분포하고 있으며, 절대오차의 평균은 47.3%이다. 그러나 소토, 기계2, 길안 지점을 제외하면 절대오차는 30.6%이다. 상대오차는 다소 부정적이지만 기존에 개발된 지역회귀모형으로 평균 갈수량을 산정한 결과와 비교하면 상대적으로 양호한 것으로 판단된다. 사용한 자료의 기간이 6년으로 통계적인 결과로 보기에는 다소 미흡한 측면이 있지만, 유역인자로서 BFI가 미계측 유역의 갈수량 특성을 설명할 수 있는 우수한 인자라고 판단하였다.

  • PDF

TREC기법을 이용한 초단기 레이더 강우예측의 도시유출 모의 적용 (Application of Very Short-Term Rainfall Forecasting to Urban Water Simulation using TREC Method)

  • 김종필;윤선권;김광섭;문영일
    • 한국수자원학회논문집
    • /
    • 제48권5호
    • /
    • pp.409-423
    • /
    • 2015
  • 본 연구에서는 기상레이더 자료를 이용하여 도시하천 유역을 대상으로 초단기 강우예측 및 홍수예측을 실시하였다. 초단기 강우예측 결과 선행시간이 증가함에 따라 관측 자료와의 상관계수가 감소하며, 평균제곱근오차는 증가하여 정확도가 감소하였으나, 선행시간 60분까지 상관계수가 0.5이상 유지되는 결과를 얻을 수 있었다. 또한 강우예측 자료 적용에 의한 도시유출 분석결과, 선행시간 증가에 따른 첨두유량과 유출체적의 감소가 발생하였으나, 첨두시간은 비교적 일치하는 것으로 분석되었다. 레이더 예측 강우 적용을 통한 도시유출 분석결과, 관측 자료와의 오차가 발생하나 이는 여러 가지 외부적인 요인으로 판단되며, 추후 강수 에코의 급격한 생성과 소멸현상 모의, 국지성 강우 예측 성능 향상 등 지속적인 알고리즘 개선과 강우-유출 모형 매개변수 검 보정이 필요할 것으로 사료된다. 본 연구의 결과는 도시하천 유역뿐만 아니라 관측이 어려운 미계측 지역의 수문자료 확보 및 실시간 홍수 예 경보시스템 구축에 확장이 가능하며, 다양한 관측자료 기반 Multi-Sensor 초단기 강우예측 기반기술로의 활용이 가능하다.

미계측 해안 도시 유역의 홍수예경보 시스템 구축 방법 검토 - 부산시 온천천 유역 대상 - (The Study on the Development of Flood Prediction and Warning System at Ungaged Coastal Urban Area - On-Cheon Stream in Busan -)

  • 신현석;박용운;홍일표
    • 한국수자원학회논문집
    • /
    • 제40권6호
    • /
    • pp.447-458
    • /
    • 2007
  • 본 연구에서는 해안 도시 하천의 범람으로 인한 홍수 재해 발생시 예상될 수 있는 피해에 대해 적절한 홍수예경보 및 피난대책을 수립하고자 대표적인 해안 도시 하천의 특성을 가지는 부산시 온천천 유역을 대상으로 수치지도에서 각종 지형자료를 추출하였고 수문 GIS 자료를 구축하였다. 강우 분석은 강우의 공간적 특성을 대상유역인 온천천에 티센망을 이용하여 고려하였으며 강우의 시간적 분포는 Huff의 2분위, 6차 회귀다항식을 이용하여 분석하였다. 홍수예경보 발령 기준을 설정하기 위하여 선정 지점 세 곳을 선택하여 위험수심을 선정하였다. 그리고, 하천 수리 분석을 위한 한계유출량 산정을 위해 HEC-RAS 모형을 이용 조위의 영향을 고려하여 홍수위 및 한계유출량을 산정하였고 도시 돌발 홍수 기준우량 산정을 위해 PCSWMM 2002를 이용하여 수문 분석을 실시하였다. 그 결과 온천천 유역의 홍수예경보 시스템과 이에 따른 홍수예경보 발령흐름도, 운영체계가 결정되었고 홍수예경보 발령 기준이 설정되었다. 본 연구를 통해 SWMM, HEC-RAS, ArcView GIS 모형을 연계하여 대상유역과 하도에 적용 통합적인 모의 기법을 제시하였으며 해안 도시 하천에서의 홍수 재해 발생시 이에 대한 대비책을 마련하게되었다. 앞으로 더욱 심도있게 연구하여 주요 해안 도시 하천에 대한 홍수예경보 시스템 구축이 절실히 요구된다.

한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I) (Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea)

  • 이순혁
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

유역특성에 의한 합성단위도의 유도에 관한 연구 (Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics)

  • 서승덕
    • 한국농공학회지
    • /
    • 제17권1호
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

다변량 통계분석기법을 이용한 전국 표준유역 대상 수문학적 군집화 연구 (A Study on Hydrologic Clustering for Standard Watersheds of Korea Water Resources Unit Map Using Multivariate Statistical Analysis)

  • 안소라;김상호;김성준
    • 한국지리정보학회지
    • /
    • 제17권1호
    • /
    • pp.91-106
    • /
    • 2014
  • 본 연구는 다변량 통계분석기법을 이용하여 한국 수자원단위지도의 전국 795개 표준유역에 대하여 수문학적 군집화를 수행하였다. 국내 유역의 종합적인 특성인자 산정을 위해 지형, 하천, 기상, 토양, 토지이용 및 수문학 관련 유역특성인자 30개를 선정하였다. 다변량 통계기법인 요인분석을 통해 유역특성인자들 간의 상관관계를 분석하여 16개의 대표 유역특성인자들을 추출하였으며, 유역의 특징을 결정짓는 인자는 토양특성, 유역위치, 유역크기, 기상 및 수문특성에 관련된 인자들로 나타났다. 군집분석을 위해 전국의 기상, 강우, 수위관측소의 자료를 수집하고 양질의 자료보유현황을 검토하여 73개의 계측 유역을 구분하였다. 이 73개의 계측유역을 기준으로 하여, 나머지 미계측 유역 간에 16개의 대표 유역특성인자들과의 유클리드 거리를 계산함으로써 수문학적 군집화를 수행하였다. 그 결과 각 권역별로 동일권역 내 표준유역 사이의 유사성은 한강이 87%, 낙동강이 69%, 금강이 41%, 섬진강이 52%, 영산강이 27%로 분석되었다.

극치자료계열의 Scaling 특성과 Bayesian GLM Model을 이용한 지역빈도해석 (A Bayesian GLM Model Based Regional Frequency Analysis Using Scaling Properties of Extreme Rainfalls)

  • 김진영;권현한;이병석
    • 대한토목학회논문집
    • /
    • 제37권1호
    • /
    • pp.29-41
    • /
    • 2017
  • 확률강수량 산정은 하천관리, 수공구조물 설계 및 위험도 분석에 있어 중요한 기초적인 자료 중 하나이다. 실무에서는 대표지속시간에 대해서 지점빈도해석을 통해 확률강수량을 추정하고 이를 지속시간에 대해서 회귀분석을 실시하여 IDF (intensity-duration-frequency) 곡선을 작성한다. 이들 IDF곡선을 활용하여 기타 지속시간에 대해서는 내삽 또는 외삽으로 보간 하여 확률강수량 추정이 이루어지고 있다. 우리나라의 경우 상대적으로 자료 연한이 짧은 점을 고려한다면, 보다 정확하고 신뢰성 있는 확률강수량 산정 기법의 필요성이 대두되고 있다. 이러한 이유로 본 연구에서는 Bayesian GLM 모형을 통하여 자료의 확률분포 매개변수의 Scaling 특성을 고려할 수 있는 지역빈도해석 모형을 개발하였다. 모형 적용결과 개별지점에서 효과적인 매개변수 추정뿐만 아니라, 유역전체의 특성을 대표하는 매개변수 추정이 가능하였다. 본 연구결과를 통해 도출된 IDF 곡선은 향후 다양한 수자원분야의 기초자료로 활용될 수 있을 것으로 기대되며, 미계측유역 또는 지속시간별 자료가 불충분한 지역에 대해서도 활용이 가능할 것으로 판단된다.

단위오염도틀 이용한 하천 오염물질의 이동시간과 종확산 예측 (Prediction of Travel Time and Longitudinal Dispersion for Water Pollutant by Using Unit Concentration Response Function)

  • 김수전;김형수;김병식;서병하
    • 한국수자원학회논문집
    • /
    • 제39권5호
    • /
    • pp.395-403
    • /
    • 2006
  • 본 연구에서는 자료수집과 적용에 상당한 시간과 노력이 요구되는 기존의 수치모형들 대신에 최소한의 유역정보를 이용해 오염물질의 이동시간과 확산을 예측할 수 있는 방법을 제시하고자 하였다. 즉, 하천에서 오염물질의 이동속도, 시간에 따른 오염물질의 첨두농도, 오염물질이 하천의 한 점을 통과하는데 소요되는 시간장경 등의 요소들을 이용한 단위오염도의 개념을 도입하였으며, 이들 요소들의 추정을 위해서는 미국 내의 수많은 하천을 대상으로 개발된 회귀방정식을 이용하였다. 본 연구에서는 낙동강 본류 성서공단에서 1994년 6월 30일에 발생한 디클로로메탄 누출사고에 대해 회귀방정식으로 단위오염도의 요소들을 추정하고, 이를 적용하여 오염물질의 이동시간과 확산을 예측하였으며, QUAL2E모형을 이용해 얻은 결과와 비교분석하였다. 회귀방정식과 QUAL2E 모형으로 모의한 결과, 두 모형 모두 모의치가 관측치와 비교적 잘 일치하는 것을 알 수 있었다. 따라서 간편하게 오염물질의 이동시간과 농도를 예측할 수 있는 회귀방정식에 의한 단위오염도는 유역정보가 부족한 유역에서 적용성이 뛰어날 것으로 사료된다.

위성 및 광역지표모형 기반 자료와 SWAT 모형을 이용한 미계측 두만강 유역의 장기 수문영향 평가 (Assessment of the long-term hydrologic impacts on the ungaged Tumen River basin by using satellite and global LSM based on data and SWAT model)

  • 조영현;안윤호;박상영;박진혁
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.94-94
    • /
    • 2020
  • 최근 정부의 신북방정책 추진에 따라 수자원분야에서는 동북아지역 국제 공유하천을 중심의 물 정보 및 연구협력 기회 확보와 지정학적 특성을 고려한 지역 현안해결 중심의 연구가 재조명 되고 있다. 두만강은 이러한 동북아의 중심에 위치하고 있으며, 중국, 북한, 러이사의 국경을 따라 흐르며 지역 수자원의 대부분을 공급하는 국제하천이다. 또한, 지난 2018년 5월에는 하구유역이 람사르(Ramsar) 습지로 승인됨에 따라 철새 등을 포함한 생태가치의 중요성도 크게 증가하였다. 하지만 이 지역은 유역의 지정학적 민감성과 접근이 제한된 관측 정보들로 인해 그 수자원·환경 효용성을 정확하게 파악할 수 없을 뿐만 아니라, 최근 기후변화에 따른 영향으로 홍수, 가뭄 등의 수재해와 수질오염 등의 문제가 발생하고 있어 가용한 기술기반의 직·간접적 접근을 통한 장기수문 및 환경변화 등에 대한 분석과 관리방안 수립 등의 연구가 필요하다. 본 연구에서는 이러한 미계측 두만강 유역을 대상으로 우선, 가용한 위성자료 및 광역지표모형(MERRA-2) 기반 NASA POWER(Prediction of Worldwide Energy Resource) 수문기상 자료와 SWAT(Soil and Water Assessment Tool) 모형을 활용하여 장기 수문영향을 평가하고자 한다. SWAT 모형은 전 지구적으로 활용 가능한 격자 해상도 약 30m의 위성기반 수치표고모형(DEM), 광역 토양도, 지역 토지이용도 자료를 활용하여 두만강 유역을 전체 19개 소유역 및 18개 하도, 138개 HRUs의 수문분석 단위로 구축하였으며, 모의는 미국 NOAA NCDC(National Climate Data Center) 및 중국 CMDC(China Meteorological Data Service Center)의 주요 관측지점에서 선별한 총 13개소의 위치에 대해 재분석된 기후/기상자료들(NASA POWER 강수, 기온, 풍속, 상대습도 및 일사량)을 적용, 1990년에서 2019년까지의 30개년도 연속자료를 구축활용 하였다. 한편, 모형의 검·보정은 앞서 언급한 관측 자료의 부재로 과거 문헌 등을 통해 파악할 수 있는 연 단위 수자원 총량 등을 활용해 진행코자한다. 아울러, 향후는 최근 활용 가능한 장기 위성관측 강수량을 적용, 재분석 자료 결과와의 비교를 통해 상호 분석 오류를 줄여나갈 수 있을 것으로도 판단된다.

  • PDF