• Title/Summary/Keyword: Ungaged basin

Search Result 49, Processing Time 0.018 seconds

The analysis of the low-flow statistics using regression model at the Chonbuk regional ungaged basin (회귀모형을 이용한 전북지역 미계측 유역의 저유량 해석)

  • 조기태;박영기;이장춘
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • The purpose of this study is to estimate the low-flow statistics at the mountainous watershed. The formulation for the estimation of the design low-flow statistics was obtained by means of a hydraulic approach applied to a simple conceptual model for a mountainous watershed. Three of the independent variables associated with the low-flow statistics is watershed area(A), average basin slope(S) and the base flow recession constant(K); Watershed area was measured from topographic maps and average basin slope is approximated in this study using Strahler's slope determining method. And base flow recession constant computed using Vogel and Kroll's method. Unfortunately, this method is usually unavailable at ungaged sites. In this study, recession constant at ungaged sites is estimated using graphical regression method used by Giese and Mason. The model for estimating low-flow statistics were applied to all 61 catchments in the Sumjin, Mankyung basin.

  • PDF

Estimation of Hydraulic Coefficients in An Ungaged Basin Using SWAT Model (SWAT 모형을 이용한 미계측 유역의 수리계수 산정)

  • Lee, Jong-So;Kim, Soo-Jun;Kim, Duck-Gil;Kang, Na-Rae;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.319-327
    • /
    • 2011
  • A hydraulic coefficient is a factor representing the hydraulic characteristics of the stream or river. For that reason, we survey stream characteristics such as cross section for performing the stream improvement plan and then we calculate hydraulic coefficient based on its surveyed results. This hydraulic coefficient can be used as an important parameter to calculate flood water level in stream, sediment discharge and water quality. However, we cannot calculate the hydraulic characteristics in an ungaged basin. To overcome this problem, we used the SWAT model for calculating the hydraulic coefficient in the ungaged basin.

Application of GIS for Runoff Simulation in Ungaged Basin(I): Selection of Soil Map and Landuse Map (미계측 유역의 유출모의를 위한 지리정보시스템의 응용(I) : 토양도 및 토지이용도의 선정)

  • Kim, Gyeong-Tak;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.163-176
    • /
    • 1999
  • Hydrology-based topographical informations generated by GIS techniques could be changed according to the selection of base map, algorithm of extraction, and so on. The purpose of this paper is to investigate the variation of SCS CN extracted by GIS technique and to propose the effective strategy for applying GIS to the rainfall-runoff simulation in ungaged basin. For experimental implementation, GIS spatial data, such as reconnaissance soil map, detailed interpretative soil map, landuse planning map and remotely sensed data(Landsat TM), were collected and generated to calculate the amount of effective rainfall in Pyungchang river basin. In applying SCS Runoff Curve Number to the test basin, the hydrological attribute data were analyzed. In addition, the characteristics of runoff responses according to the selection of GIS spatial data for SCS CN were reviewed. This study shows the applicability of GIS techniques to runoff simulation in ungaged basin by comparing with the measured flood hydrograph. It has been found that the detained interpretative soil map and remote sensing data are appropriate for calculating of SCS CN.

  • PDF

SIMULATION OF REGIONAL DAILY FLOW AT UNGAGED SITES USING INTEGRATED GIS-SPATIAL INTERPOLATION (GIS-SI) TECHNIQUE

  • Lee, Ju-Young;Krishinamursh, Ganeshi
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.39-48
    • /
    • 2005
  • The Brazos River is one of the longest rivers contained entirely in the state of Texas, flowing over 700 miles from northwest Texas to the Gulf of Mexico. Today, the Brazos River Authority and Texas Commission on Environmental Quality interest in drought protection plan, waterpower project, and allowing the appropriation of water system-wide and water right within the Brazos River Basin to meet water needs of customers like farmers and local civilians in the future. Especially, this purpose of this paper primarily intended to provide the data for the engineering guidelines and make easily geological mapping tool. In the Brazos River basin, many stream-flow gage station sites are not working, and they can not provide stream-flow data sets enough for development of the Probable Maximum Flood (PMF) for use in the evaluation of proposed and existing dams and other impounding structures. Integrated GIS-Spatial Interpolation (GIS-SI) tool are composed of two parts; (1) extended GIS technique (new making interface for hydrological regionalization parameters plus classical GIS mapping skills), (2) Spatial Interpolation technique using weighting factors from kriging method. They are obtained from the relationship among location and elevation of geological watershed and existing stream-flow datasets. GIS-SI technique is easily used to compute parameters which get drainage areas, mean daily/monthly/annual precipitation, and weighted values. Also, they are independent variables of multiple linear regressions for simulation at un gaged stream-flow sites. In this study, GIS-SI technique is applied to the Brazos river basin in Texas. By assuming the ungaged flow at the sites of Palo Pinto, Bryan and Needville, the simulated daily/monthly/annual time series are compared with observed time series. The simulated daily/monthly/annual time series are highly correlated with and well fitted to the observed times series.

  • PDF

Analysis of the Clark Model Using the Similarity Characteristics of the Basin (유역의 상사성을 이용한 Clark 모형의 매개변수 해석)

  • Seong, Gi-Won
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.427-435
    • /
    • 1999
  • The Clark unit hydrograph is a three parameter synthetic unit hydrograph procedure that can be used in flood hydrology. The present work is an attempt to estimate parameters of the Clark model in ungaged basin by means of relationships that provides for the hydrologic similarity. The time area concentration curve was determined by analytic method and the Clark model was generalized by being made dimensionless form. Calculation of the concentration time was made with the formula fractal concept used, and the storage coefficient was estimated by the empirical and regional equation. Evaluation on Dongok basin was performed to prove the validity of the proposed model. The derived hydrograph predicted the observed hydrograph fairly well.

  • PDF

The Developmet and Application of GIS-Based Geomorpho-Hydrological Watershed Model (G2WMS) (GIS기반 지형수문유역모의 모형의 개발 및 적용 연구)

  • Kim, Hong-Tae;Shin, Hyun-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.123-133
    • /
    • 2009
  • In this study, we developed the GIS-based Geomorpho-hydrological Watershed Modeling System($G^{2}WMS$) which could consider both nonlilear rainfall-runoff relationship based on Geomorpho-Climatic Unit Hydrograph(GCUH) as well as watershed system inducing river routing. The developed new model was calibrated at the gaged rainfall events at natural watersheds and previewed to apply at the ungaged mountain basins, such as Sulma basin for small mountain basin and Andong-Dam basin for large scale basin, compared single with partitioned basin in the observed unit hydrographs and rainfall-discharge events. Finally, at the large scale Andong dam basin, we concluded that partitioned basin cases which including th nonlinear GCUH and river routing methods were superior to single basins which including the traditional methods in rainfall-discharge simulation at the mountain basins.

River Flow Forecasting Model for the Youngsan Estuary Reservoir Operation( II) - Simulating Runoff Hydrograptis at Ungaged Stations - (영산호 운영을 위한 홍수예보모형의 개발(II) -나주하류유성에서의 총수유출 추정-)

  • 박창언;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.65-72
    • /
    • 1995
  • This paper describes the applications of the SCS TR-20 hydrologic model for simula- tion of hourly inflow rates from sixty-six ungaged tributaries and subareas between the Naju station and the estuarin dam at the Yongsan River Basin. The model was tested for the ungaged conditions with fifteen storm events at Naju station. Hourly simulated run- off data were compared with the observed, and the results showed less correlationships between the two data than those from TANK model. The coefficients of correlation ranged from 0.74 to 0.87. The curve numbers and time of concentration were defined from topographic dta for each of sixty-six tributaries for the estuarine dam and used for TR-20 applications. The results were within an acceptable range of errors in simulating the inflow fluctuations for the flood forecasting at the estuarine dam.

  • PDF

GIUH Model for River Runoff Estimation (하천 유출량 산정을 위한 GIUH모델)

  • 이순탁;박종권
    • Water for future
    • /
    • v.20 no.4
    • /
    • pp.267-278
    • /
    • 1987
  • This study aims at the decision of geomorphologic instantaneous unit hydrograph(GIUH) model parameter fore the ungaged or the data deficiented Basin, to analyze rainfall runoff relation in river basin by applying queueing theory with geomorphologic factors.The concept of GIUH model is based upon the principle of queueing theory of rain drops which may follow many possible routes during rainfall period within watershed system to ist outlet. Overland flow and stream flow can be simulated, respectively, by linear reservoir and linear channel conceptual models. Basically, the model is a mon-lineal and time variant hydrologic system model. The techniques of applying are adopted subarea method and mean-value method, the watershed is divided according to its stream number and order. To prove it to be applicable, the GIUH model is applied to the Wi-Stream basin of Nak-Dong River(Basin area; 475.53$\textrm{km}^2$), southen part of Korea. The simulated and the observed direct runoff hydrographs are compared with the peak discharge, times to peak and coefficients of efficiency, respectively, and the results show quite satisfactory.Therefore, th GIUH model can be extensively applied for the runoff analysis in the ungaged and the data deficiented basin.

  • PDF

A Research on Application of Flood Simulation at Ungaged Basin for Water Management in the Ara River (아라천 물관리를 위한 미계측 유역 홍수 모의 적용성 고찰)

  • Lee, Sang Jin;Noh, Joon Woo;Kim, Joo Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.169-174
    • /
    • 2012
  • For efficient water management in the Ara River during the flood season, applicability of flood simulation model in the ungaged Gulpo watershed has been tested. In the Gulpo River watershed, fundamental hydrologic data such as water level and flowrates are very limited and selection of the reliable hydrologic parameters are very important for model application. This study tested reliability of parameters estimated using the empirical equation based on the HEC-HMS runoff simulation. Also coupled with HEC-RAS hydraulic routing model, simulated flowrates from HEC-HMS has been compared with the observed water levels collected at the upstream and downstream of the Gyulhyun Weir station during the flood event in 2010. Based on this information, stage-discharge curve has been developed and its reliability has been tested for flood event in 2011.

Analysis of the Nash Model Using the Similarities of Hydrogeomorphologic and Time Response Characteristics (수문지형특성 및 시간응답특성의 상사성을 이용한 Nash 모형 해석)

  • Seong, Gi-Won
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.97-106
    • /
    • 1997
  • Parameters of the Nash model were analyzed using similarity concepts for the hydrogeomorphologic and the time response characteristics, then the application of parameter estimation was performed for a basin where no data are available. The self-similarity was investigated to evaluate the similarity of hydrogeomorphologic characteristics and to derive a equation for the time of concentration. The relation between model parameters and time characteristics such as travel and lag time, were developed to obtain their properties of similarity. There were remarkable results about the assessment for basin similarity and the application to an ungaged basin in Wi stream basin.

  • PDF