• Title/Summary/Keyword: Unet++

Search Result 61, Processing Time 0.032 seconds

A Computerized Doughty Predictor Framework for Corona Virus Disease: Combined Deep Learning based Approach

  • P, Ramya;Babu S, Venkatesh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2018-2043
    • /
    • 2022
  • Nowadays, COVID-19 infections are influencing our daily lives which have spread globally. The major symptoms' of COVID-19 are dry cough, sore throat, and fever which in turn to critical complications like multi organs failure, acute respiratory distress syndrome, etc. Therefore, to hinder the spread of COVID-19, a Computerized Doughty Predictor Framework (CDPF) is developed to yield benefits in monitoring the progression of disease from Chest CT images which will reduce the mortality rates significantly. The proposed framework CDPF employs Convolutional Neural Network (CNN) as a feature extractor to extract the features from CT images. Subsequently, the extracted features are fed into the Adaptive Dragonfly Algorithm (ADA) to extract the most significant features which will smoothly drive the diagnosing of the COVID and Non-COVID cases with the support of Doughty Learners (DL). This paper uses the publicly available SARS-CoV-2 and Github COVID CT dataset which contains 2482 and 812 CT images with two class labels COVID+ and COVI-. The performance of CDPF is evaluated against existing state of art approaches, which shows the superiority of CDPF with the diagnosis accuracy of about 99.76%.

Pixel level prediction of dynamic pressure distribution on hull surface based on convolutional neural network (합성곱 신경망 기반 선체 표면 압력 분포의 픽셀 수준 예측)

  • Kim, Dayeon;Seo, Jeongbeom;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • In these days, the rapid development in prediction technology using artificial intelligent is being applied in a variety of engineering fields. Especially, dimensionality reduction technologies such as autoencoder and convolutional neural network have enabled the classification and regression of high-dimensional data. In particular, pixel level prediction technology enables semantic segmentation (fine-grained classification), or physical value prediction for each pixel such as depth or surface normal estimation. In this study, the pressure distribution of the ship's surface was estimated at the pixel level based on the artificial neural network. First, a potential flow analysis was performed on the hull form data generated by transforming the baseline hull form data to construct 429 datasets for learning. Thereafter, a neural network with a U-shape structure was configured to learn the pressure value at the node position of the pretreated hull form. As a result, for the hull form included in training set, it was confirmed that the neural network can make a good prediction for pressure distribution. But in case of container ship, which is not included and have different characteristics, the network couldn't give a reasonable result.

Comparative Study of Deep Learning Model for Semantic Segmentation of Water System in SAR Images of KOMPSAT-5 (아리랑 5호 위성 영상에서 수계의 의미론적 분할을 위한 딥러닝 모델의 비교 연구)

  • Kim, Min-Ji;Kim, Seung Kyu;Lee, DoHoon;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.206-214
    • /
    • 2022
  • The way to measure the extent of damage from floods and droughts is to identify changes in the extent of water systems. In order to effectively grasp this at a glance, satellite images are used. KOMPSAT-5 uses Synthetic Aperture Radar (SAR) to capture images regardless of weather conditions such as clouds and rain. In this paper, various deep learning models are applied to perform semantic segmentation of the water system in this SAR image and the performance is compared. The models used are U-net, V-Net, U2-Net, UNet 3+, PSPNet, Deeplab-V3, Deeplab-V3+ and PAN. In addition, performance comparison was performed when the data was augmented by applying elastic deformation to the existing SAR image dataset. As a result, without data augmentation, U-Net was the best with IoU of 97.25% and pixel accuracy of 98.53%. In case of data augmentation, Deeplab-V3 showed IoU of 95.15% and V-Net showed the best pixel accuracy of 96.86%.

Development of Robust Semantic Segmentation Modeling on Various Wall Cracks (다양한 외벽에 강인한 균열 구획화 모델 개발)

  • Lee, Soo Min;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.49-52
    • /
    • 2022
  • 건물 외벽에 발생하는 균열은 시설물 구조 안전에 영향을 미치며 그 크기에 따라 위험도가 달라진다. 이에 따라 전문검사관의 현장 점검을 통해 발생 균열 두께를 정밀하게 측정할 필요가 있고 최근에는 이러한 현장 안전점검에 인공지능을 도입하려는 추세다. 그러나 기존의 균열 데이터셋은 주로 콘크리트에만 한정되어 다양한 외벽에 강인한 모델을 구축하기 어렵고 균열 두께를 측정하기 위해 정확한 마스크(Mask) 정보가 필요하나 이를 만족하는 데이터셋이 부재하다. 본 논문에서는 다양한 외벽에 강인한 균열 구획화 모델을 목적으로 2,744장의 이미지를 촬영하고 매직 완드 기법으로 라벨링을 진행해 데이터셋을 구축 후, 이를 바탕으로 딥러닝 기반 균열 구획화 모델을 개발했다. UNet-ResNet50을 최종모델로 선정 및 개발 결과, 테스트 데이터셋에 대해 81.22%의 class IoU 성능을 보였다. 본 연구의 기술을 바탕으로 균열 두께를 측정하여 건축물 안전점검에 활용될 수 있기를 기대한다.

  • PDF

Artificial intelligence in colonoscopy: from detection to diagnosis

  • Eun Sun Kim;Kwang-Sig Lee
    • The Korean journal of internal medicine
    • /
    • v.39 no.4
    • /
    • pp.555-562
    • /
    • 2024
  • This study reviews the recent progress of artificial intelligence for colonoscopy from detection to diagnosis. The source of data was 27 original studies in PubMed. The search terms were "colonoscopy" (title) and "deep learning" (abstract). The eligibility criteria were: (1) the dependent variable of gastrointestinal disease; (2) the interventions of deep learning for classification, detection and/or segmentation for colonoscopy; (3) the outcomes of accuracy, sensitivity, specificity, area under the curve (AUC), precision, F1, intersection of union (IOU), Dice and/or inference frames per second (FPS); (3) the publication year of 2021 or later; (4) the publication language of English. Based on the results of this study, different deep learning methods would be appropriate for different tasks for colonoscopy, e.g., Efficientnet with neural architecture search (AUC 99.8%) in the case of classification, You Only Look Once with the instance tracking head (F1 96.3%) in the case of detection, and Unet with dense-dilation-residual blocks (Dice 97.3%) in the case of segmentation. Their performance measures reported varied within 74.0-95.0% for accuracy, 60.0-93.0% for sensitivity, 60.0-100.0% for specificity, 71.0-99.8% for the AUC, 70.1-93.3% for precision, 81.0-96.3% for F1, 57.2-89.5% for the IOU, 75.1-97.3% for Dice and 66-182 for FPS. In conclusion, artificial intelligence provides an effective, non-invasive decision support system for colonoscopy from detection to diagnosis.

An Effective Control Method for Improving Integrity of Mobile Phone Forensics (모바일 포렌식의 무결성 보장을 위한 효과적인 통제방법)

  • Kim, Dong-Guk;Jang, Seong-Yong;Lee, Won-Young;Kim, Yong-Ho;Park, Chang-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.5
    • /
    • pp.151-166
    • /
    • 2009
  • To prove the integrity of digital evidence on the investigation procedure, the data which is using the MD 5(Message Digest 5) hash-function algorithm has to be discarded, if the integrity was damaged on the investigation. Even though a proof restoration of the deleted area is essential for securing the proof regarding a main phase of a case, it was difficult to secure the decisive evidence because of the damaged evidence data due to the difference between the overall hash value and the first value. From this viewpoint, this paper proposes the novel model for the mobile forensic procedure, named as "E-Finder(Evidence Finder)", to ,solve the existing problem. The E-Finder has 5 main phases and 15 procedures. We compared E-Finder with NIST(National Institute of Standards and Technology) and Tata Elxsi Security Group. This paper thus achieved the development and standardization of the investigation methodology for the mobile forensics.

A Study on the Liver and Tumor Segmentation and Hologram Visualization of CT Images Using Deep Learning (딥러닝을 이용한 CT 영상의 간과 종양 분할과 홀로그램 시각화 기법 연구)

  • Kim, Dae Jin;Kim, Young Jae;Jeon, Youngbae;Hwang, Tae-sik;Choi, Seok Won;Baek, Jeong-Heum;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.757-768
    • /
    • 2022
  • In this paper, we proposed a system that visualizes a hologram device in 3D by utilizing the CT image segmentation function based on artificial intelligence deep learning. The input axial CT medical image is converted into Sagittal and Coronal, and the input image and the converted image are divided into 3D volumes using ResUNet, a deep learning model. In addition, the volume is created by segmenting the tumor region in the segmented liver image. Each result is integrated into one 3D volume, displayed in a medical image viewer, and converted into a video. When the converted video is transmitted to the hologram device and output from the device, a 3D image with a sense of space can be checked. As for the performance of the deep learning model, in Axial, the basic input image, DSC showed 95.0% performance in liver region segmentation and 67.5% in liver tumor region segmentation. If the system is applied to a real-world care environment, additional physical contact is not required, making it safer for patients to explain changes before and after surgery more easily. In addition, it will provide medical staff with information on liver and liver tumors necessary for treatment or surgery in a three-dimensional manner, and help patients manage them after surgery by comparing and observing the liver before and after liver resection.

Turbulent-image Restoration Based on a Compound Multibranch Feature Fusion Network

  • Banglian Xu;Yao Fang;Leihong Zhang;Dawei Zhang;Lulu Zheng
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.237-247
    • /
    • 2023
  • In middle- and long-distance imaging systems, due to the atmospheric turbulence caused by temperature, wind speed, humidity, and so on, light waves propagating in the air are distorted, resulting in image-quality degradation such as geometric deformation and fuzziness. In remote sensing, astronomical observation, and traffic monitoring, image information loss due to degradation causes huge losses, so effective restoration of degraded images is very important. To restore images degraded by atmospheric turbulence, an image-restoration method based on improved compound multibranch feature fusion (CMFNetPro) was proposed. Based on the CMFNet network, an efficient channel-attention mechanism was used to replace the channel-attention mechanism to improve image quality and network efficiency. In the experiment, two-dimensional random distortion vector fields were used to construct two turbulent datasets with different degrees of distortion, based on the Google Landmarks Dataset v2 dataset. The experimental results showed that compared to the CMFNet, DeblurGAN-v2, and MIMO-UNet models, the proposed CMFNetPro network achieves better performance in both quality and training cost of turbulent-image restoration. In the mixed training, CMFNetPro was 1.2391 dB (weak turbulence), 0.8602 dB (strong turbulence) respectively higher in terms of peak signal-to-noise ratio and 0.0015 (weak turbulence), 0.0136 (strong turbulence) respectively higher in terms of structure similarity compared to CMFNet. CMFNetPro was 14.4 hours faster compared to the CMFNet. This provides a feasible scheme for turbulent-image restoration based on deep learning.

A Study of AI-based Monitoring Techniques for Land-based Debris in Stream (AI기반 하천 부유쓰레기 모니터링 기술 연구)

  • Kyungsu Lee;Haein Yoon;Jonghwa Won;Sang Hwa Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.137-137
    • /
    • 2023
  • 해양쓰레기는 해안의 심미적 가치 저하뿐만 아니라 생태계 파괴, 유령 어업에 따른 수산업 피해 등의 사회적·환경적 문제를 발생시키며, 그중 70% 이상은 육상 기인으로 플라스틱 및 기타 쓰레기가 주를 이루는 해외와 달리 국내의 경우 다량의 초목류를 포함하고 있다. 다양한 부유쓰레기에 대한 기존의 해양쓰레기량 추정의 한계와 하천·하구 쓰레기 수거의 효율화를 위해 해양으로 유입되는 부유쓰레기 방지를 위한 실효성 있는 대책 수립이 필요한 실정이다. 본 연구는 해양 유입 전 하천의 차단시설에 차집된 부유쓰레기의 수거 효율화 및 지속가능한 해양쓰레기 데이터 구축을 위해 AI기반의 기술을 통해 부유쓰레기 성상 분석 기법(Object Detection)과 차집량 분석 기법(Semantic Segmentation)을 활용하였다. 실제와 유사한 데이터 수집을 위해 다양한 하천 환경(정수조, 소하천, 급경사수로)에 대해 탁도(녹조, 유사), 광량, 쓰레기형상, 초목류 함량, 날씨(소하천), 유속(급경사수로) 등의 실험조건에 대하여 해양쓰레기 분류 기준 및 통계를 바탕으로 부유쓰레기 종류 선정하여 학습을 위한 데이터를 수집하였다. 학습 목적에 따라 구분하여 라벨링(Bounding box, Polygon)을 수행하고, 각 분석 기법별 전이학습을 통해 Phase 1(정수조), Phase 2(소하천), Phase 3(급경사수로) 순서로 모델을 고도화하였다. 성상 분석을 위해 YOLO v4를 활용하여 Train, Test DataSet(9:1)을 구성하고 학습 및 평가는 Iteration마다의 mAP, loss 값을 통해 비교하였으며, 학습 Phase에 따라 모델 고도화로 Test Set의 mAP 값이 성상별로 높아짐을 확인하였으며, 차집량 분석을 위해 Unet을 활용하여 Train, Test, Validation DataSet(8.5:1:0.5)을 구성하고 epoch별 IoU(intersection over Union), F1-score, loss 값을 비교하여 정성적, 정량적 평가 모두 Phase 3에서 가장 높은 성능을 확인하였다. 향후 하천 환경에서의 다양한 영양인자별 분석을 통해 주요 영향인자 도출 및 Hyper Parameter 최적화를 통한 모델 고도화로 인해 활용성이 높아질 것으로 판단된다.

  • PDF

XAI based public facility safety evaluation system research (XAI 기반의 공공시설물 건전도 안전검사 평가시스템 연구)

  • Park, Yesul;Kyeong, Seonjae;Kim, Minjun;Oh, Chanmi;Lee, Jeasung;Lee, Jaehwan;Lee, Hyunseung;Lee, Cheolhee;Moon, Hyeonjoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.705-708
    • /
    • 2020
  • 공공시설에 대한 안전점검은 공공시설의 노후화에 따라 정기적인 검사의 필요성이 요구되고 있다. 기존의 안전점검 방식은 대부분 육안으로 점검하는 것에 의존하는데 이는 점검자의 숙련도에 따라 결과의 품질이 달라지게 된다. 본 논문에서는 XAI 기반의 공공시설물 건전도 안전검사 평가시스템을 제안하며, 이는 점검자의 숙련도와 무관하게 항상 같은 결과를 도출해 내며 XAI 를 통해 사용자에게 안전점검에 대한 결과를 제시해준다. 공공시설물 중 터널 시설물의 안전검사 평가시스템을 기반으로 하는 연구를 진행하였으며 이는 수정없이 교량 시설물 등 다른 공공시설물에 적용이 가능하다. 본 논문은 5 가지로 구분된다. 1) 터널 이미지와 균열에 마스크를 적용한 이미지 두 가지의 데이터 셋을 448x448 로 생성한다. 2) UNet 과 Resnet152 의 두 모델을 적용한 혼합 모델을 이용하여 생성한 데이터 셋을 훈련시킨다. 3) 훈련된 혼합 모델에서 생성된 분할 이미지에 대해 노이즈 제거 과정을 진행한다. 4) 노이즈 제거가 끝난 이미지에 스켈레톤화(Skeletonization)를 적용시켜 균열 이미지의 뼈대를 구한다. 뼈대 이미지 기반으로 균열의 길이, 두께, 위치등의 정보를 얻는다. 5) XAI 부분에서는 뼈대 이미지의 정보를 토대로 균열의 위치, 두께, 길이 등에 대해 계산을 진행한 후 사용자에게 제시해준다.

  • PDF