• Title/Summary/Keyword: Undrained test

Search Result 247, Processing Time 0.022 seconds

Analysis of Consolidation and Shear Characteristics for the Kwangyang Bay Clay (실내시험을 통한 광양만 점토의 압밀 및 전단특성분석)

  • 이영휘;김용준;김대길
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.151-160
    • /
    • 1999
  • A series of laboratory tests for the marine clay sampled under the sea of Kwangyang bay have been conducted. The main types of tests are the general index property tests, the oedometer tests and the triaxial compression tests in both undrained(CIU) and drained(CID) conditions. The clayey samples, classified as CL, CH with natural water content of 38.3~84.6% and liquidity index of 0.71~0.98, are in the normally consolidated state with O.C.R. of 1.0l~l.60. The undrained stress path from CIU tests can be normalized with isotropic consolidation pressure$(p_0)$ and equal shear strain contour is linear passing through the origin in the (q, p) plot. The undrained shear strain is found to be the only function of the stress ratio($\eta$) and linear with intercept in the ($\varepsilon/\eta,\eta$) plot. The built-up pore pressure normalized with pc is also linear with respect to $\eta$. and its slope is defined by ´C´ as a pore pressure parameter. Equations to predict the undrained stress path and the shear strain are proposed. It is proved that the proposed equations give better agreements to the measured values than the Cam-clay theories. The failure points of the stress path are located on the same C.S.L. in (q, p) plot during both CIU and CID tests, which justifies the concept of critical state theory.

  • PDF

Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils (풍화토와 점성토 위주의 토석류 거동과 유동특성)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • The risks of debris flows caused by climate change have increased significantly around the world. Recently, landslide disaster prevention technology is more focused on the failure and post-failure dynamics to mitigate the hazards in flow-prone area. In particular, we should define the soil strength and flow characteristics to estimate the debris flow mobility in the mountainous regions in Korea. To do so, we selected known ancient landslides area: Inje, Pohang and Sangju debris flows. Firstly we measured physical and mechanical properties: liquidity index and undrained shear strength by fall cone penetrometer. From the test results, we found that there is a possible relationship between liquidity index and undrained shear strength, $C_{ur}=(1.2/I_L)^{3.3}$, in the selected areas, even though they were different in geological compositions. Assuming that the yield stress is equal to the undrained shear strength at the initiation of sliding, we examined the flow characteristics of weathered soils in Korea. When liquidity index is given as 1, 1.5 and 3.0, the debris flow motion of weathered soils is compared with that of mud-rich sediments, which are known as low-activity clays. At $I_L=1$, it seems that debris flow could reach approximately 250m after 5 minutes. As liquidity index increased from 1 to 3, the debris flow propagation of weathered soils is twice than that of low-activity clays. It may be due to the fact that soil masses mixed with the ambient water and then highly fragmented during flow, thereby leading to the high mobility. The results may help to predict the debris flow propagation and to develop disaster prevention technology at similar geological settings, especially for the weathered soils, in Korea.

Estimation of Effective Stress for Undrained Clays using In-situ Penetration test (원위치 관입시험을 이용한 비배수 점토의 유효응력 산정)

  • Cho, Sung-Hwan;Seo, Kyung-Bum;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.990-996
    • /
    • 2010
  • In this study, a method for estimating the effective stress of clays using in-situ penetration test(PCPT) result is proposed. The proposed method is based on a correlation between the PCPT results and strength increment ratio. According to proposed method, no additional testing procedure for collecting undisturbed soil sample is required, which can reduce overall testing cost. To verify this method, for analysis, various analytical solutions were adopted and used. Measured and predicted effective stress are compared on the test results. The verification sites consist of a variety of soil condition. From comparison, it is seen that predicted value of effective stress using the propose method match well those from measured results.

  • PDF

Development of Large Diameter Sampler and Analysis of Sampling Soil Character (대구경 샘플러의 개발 및 채취시료의 성질 분석)

  • 김영진;홍성완;김현민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.353-360
    • /
    • 2000
  • We developed large diameter sampler (we called KICT type large diameter sampler) to obtain undisturbed clay and sand samples. In-situ test carried out in the In-Chon international airport and Kim-Hae. Also we obtained undisturbed sample with a hydraulic piston sampler in the nearly site and carried out unconfined compression test, consolidation test and triaxial test. The result, unconfined compression strength, secant modules, preconsolidation pressure and undrained shear strength of samples to obtain KICT type large diameter sampler are larger than that of samples to obtain hydraulic piston sampler. But failure strains and volume changes at the consolidation of samples to obtain KICT type large diameter sampler are smaller than that of samples to obtain hydraulic piston sampler

  • PDF

An Optimization Method for Self-Boring Pressuremeter Holding Test to Determine a Horizontal Coefficient of Consolidation under Partial Drained Soil Conditio (부분배수가 발생하는 지반의 수평압밀계수 결정을 위한 자가굴착식 프레셔메터 유지시험의 최적화 해석법)

  • Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.370-375
    • /
    • 2005
  • This paper describes a systematic way of identifying the horizontal coefficient of consolidation for clayey soil under undrained condition and silty soil under partial drained condition by applying an optimization technique to the early part of dissipation data measured from the self-boring pressuremeter strain holding test. An analytical solution developed by Randolph & Wroth (1979) was implemented in normalized form to express the build-up and dissipation of excess pore pressures around a pressuremeter as a function of the rigidity index. Horizontal coefficient of consolidation was determined by minimizing the differences between theoretical and measured excess pore pressure curves using optimization technique. It was found that the proposed optimization technique can evaluate in-situ horizontal coefficient of consolidation rationally, which is similar with that obtained from the piezocone dissipation test. Furthermore, proposed method can evaluate appropriate coefficient of consolidation for soil under partially drained condition.

  • PDF

A Physical Model Test on Behavior of Shield-tunnel Lining according to Drain Conditions (배수조건에 따른 쉴드터널 라이닝의 거동연구를 위한 모형실험)

  • Choi, Gou-Moon;Yune, Chan-Young;Ma, Sang-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.55-65
    • /
    • 2014
  • Most shield tunnels are designed based on the assumption of a undrained condition. But they are operated as drained tunnels in which underground water flows and passes through a drainage facility. Therefore, it is necessary that the drainage condition be considered in the shield tunnel design. In this research, new testing device which can simulate the underground tunnel located below ground water level, was developed. Total stress and pore water pressure were examined and an inflow water into an inner pipe was measured using the testing device. Test results showed that the total stress, which was the sum of effective stress and pore pressure, increased more in an undrained condition and an inflow water into an inner pipe was proportional to the water pressure but inversely proportional to the loading stress. Consequently, if the drainage is considered in the shield tunnel design, the more economical design can be expected because of the stress reduction of the lining.

Variation of Undrained Shear Behavior with Consolidation Stress Ratio of Nakdong River Sand (압밀응력비에 따른 낙동강모래의 비배수전단거통 특성)

  • 김영수;정성관;송준혁;정동길
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.83-93
    • /
    • 2003
  • This research, in order to study the effects of initial shear stress of anisotropically consolidated sand that has 0.558% fines, performed several undrained static and dynamic triaxial test. To simulate the real field conditions, loose and dense samples were prepared. Besides, the cyclic shear strength of Nakdong River sand under various combinations of initial static shear stress, stress path, pore water pressure and residual strength relationship was studied. By using Bolton's theory, peak internal friction angle at failure which has considerable effects on the relative density and mean effective stress was determined. In p'- q diagram, the phase transformation line moves closer to the failure line as the specimen's initial anistropical consolidation stress increases. Loose sands were more affected than dense sands. The increase of consolidation stress ratio from 1.4 to 1.8 had an effect on liquefaction resistance strength resulting from the increase of relativity density, and showed similar CSR values in dense specimen condition.

Physical and numerical modelling of the inherent variability of shear strength in soil mechanics

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghoreishi, Malahat;Taleb, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.31-45
    • /
    • 2019
  • In this study the spatial variability of soils is substantiated physically and numerically by using random field theory. Heterogeneous samples are fabricated by combining nine homogeneous soil clusters that are assumed to be elements of an adopted random field. Homogeneous soils are prepared by mixing different percentages of kaolin and bentonite at water contents equivalent to their respective liquid limits. Comprehensive characteristic laboratory tests were carried out before embarking on direct shear experiments to deduce the basic correlations and properties of nine homogeneous soil clusters that serve to reconstitute the heterogeneous samples. The tests consist of Atterberg limits, and Oedometric and unconfined compression tests. The undrained shear strength of nine soil clusters were measured by the unconfined compression test data, and then correlations were made between the water content and the strength and stiffness of soil samples with different consistency limits. The direct shear strength of heterogeneous samples of different stochastic properties was then evaluated by physical and numerical modelling using FISH code programming in finite difference software of $FLAC^{3D}$. The results of the experimental and stochastic numerical analyses were then compared. The deviation of numerical simulations from direct shear load-displacement profiles taken from different sources were discussed, potential sources of error was introduced and elaborated. This study was primarily to explain the mathematical and physical procedures of sample preparation in stochastic soil mechanics. It can be extended to different problems and applications in geotechnical engineering discipline to take in to account the variability of strength and deformation parameters.

Effects of freeze-thaw cycle on mechanical properties of saline soil and Duncan-Chang model

  • Shukai Cheng;Qing Wang;Jiaqi Wang;Yan Han
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.249-260
    • /
    • 2024
  • In order to study the mechanical propertied and change rules of undrained shear behavior of saline soil under the freeze-thaw cycles, an improved constitutive model reflecting the effects of freeze-thaw cycles was proposed based on the traditional Duncan-Chang model. The saline soil in Qian'an County, western Jilin Province, was selected as the experimental object. Then, a set of freeze-thaw cycles (0, 1, 10, 30, 60, 90, 120) tests were conducted on the saline soil specimens, and conventional consolidated undrained triaxial shear tests were conducted on the saline soil specimens that underwent freeze-thaw cycles. The stress-strain relationship was obtained by the triaxial shear test. The model parameters have a corresponding regression relationship with the number of freeze-thaw cycles. Finally, based on the function expression of the model parameters, the modified Duncan-Chang model with the number of freeze-thaw cycles as the influence factor was established, whilst the calculation program of the modified model is compiled. Based on the test results, the stress-strain relationship of the saline soil specimen shows strain hardening. The shear strength gradually decreases with the increase of freeze-thaw cycle. The 10 freeze-thaw cycles are the turning point in the trend of changes of the mechanical properties of saline soils. The calculated and experimental stress-strain relationship are compared, and the comparison between the calculated value of the model and the experimental value showed that the two had a good consistency, which verified the validity of the modified Duncan-Chang model in reflecting the effects of the freeze-thaw cycle.

Pore Water Pressure Behavior due to Undrained Creep of Saturated Clay (포화점성토의 비배수 CREEP 성질에 의한 공극수압의 거동)

  • 강우묵;조성섭;지인택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.38-50
    • /
    • 1988
  • carried out to present a rheology model which is able to treat time-dependent properties of clay. The results were summarized as follow ; 1. The slope (a(e1)) of deviator stress in strain rate test was independent on axial strain, and pore water pressure was decreased with increment of strain rate. 2. The pore water pressure in a stress relaxation condition was not changed when the strain rate before stress relaxation was 0.05%/min., but it was increased with increment of time when the strain rate before stress relaxation was 0.2%/min 3. The greater the stress condition (q/qmax) and the strain rate before creep test became, the greater the increment rate of axial strain in creep test became. 4. SEKIGUCHI's constitutive equation was slightly overpredicted while empirical equation proposed in the study was well coincided with measured values. 5. The constitutive equation induced by a strain function could be dealed with a behavior of the pore water pressure increased with increment of elapsed time after primary consolidation.

  • PDF