• Title/Summary/Keyword: Undrained strength

Search Result 279, Processing Time 0.023 seconds

A Study on Characteristics of Undrained Shear Strength of Remolded Marine Clays at Incheon (인천 재성형 해성점토의 비배수 전단강도 특성에 대한 연구)

  • Yoo, Nam-Jae;Lee, Han-Sol;Jun, Sang-Hyun
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.81-88
    • /
    • 2009
  • The main purpose of this work is to determine characteristics of undrained shear strength of remolded marine clay at Incheon. Laboratory vane tests with remolded marine clay sampled from west coast at Incheon were performed to investigate the undrained shear strength of them being dumped for reclamation after dredging from the sea bottom. Test results were compared with the predicted values of undrained shear strength proposed by many researchers. It was found that measured results about undrained shear strength with water content was in good agreements with values proposed by Mikasa and Modified Mikasa's empirical formula.

  • PDF

A Study on Characteristics of Undrained Shear Strength of Remolded Marine Clays at Incheon and Busan (인천 및 부산 재성형 해성점토의 비배수 전단강도 특성에 대한 연구)

  • Yoo, Nam-Jae;Lee, Han-Sol;Jun, Sang-Hyun
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.103-109
    • /
    • 2010
  • This research is to determine characteristics of undrained shear strength of remolded marine clay at Incheon and Busan, representing typical marine clays in Korea. Laboratory vane tests with remolded marine clays sampled from coasts at Incheon and Busan were performed to investigate the undrained shear strength of them. Test results were compared with the predicted values of undrained shear strength proposed by many researchers. It was found that measured results about undrained shear strength with water content was in good agreements with values proposed by Terzaghi empirical formula.

  • PDF

Effects of Anisotropic Consolidation on Strength of Soils (이방압밀이 흙의 강도에 미치는 영향)

  • 강병희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.3-14
    • /
    • 2000
  • Anisotropic consolidation, shear, a transportational component during or after deposition each may produce anisotropic fabrics, which result in the anisotropic properties of soils. Nevertheless, the isotropically consolidated compression triaxial tests are commonly used in practice to determine the strength of the anisotropically consolidated soils because of their practicality and simplicity. In this paper the effects of anisotropic consolidation on the strength properties of soils are discussed. For the sandy soils consolidated under a constant vertical consolidation pressure, the deformation modulus decreases with decreasing consolidation pressure ratio($\sigma$$\sub$3c/'/$\sigma$ sub 1c/'), but the liquefaction resistance increases. For the saturated cohesive soils, both the undrained shear strength and undrained creep strength decrese with decreasing the consolidation pressure ratio. When the in-situ strength properties of the anisotropically and normally consolidated soils are determined by the isotropically consolidated tests, the undrained shear strength and creep strength of saturated cohesive soils as well as the deformation modulus of sandy soils are measured to be higher than the rear in-situ values. This, therefore, could lead to a dangerous judgement in stability analysis

  • PDF

Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils

  • Park, Tae-Woong;Kim, Hyeong-Joo;Tanvir, Mohammad Taimur;Lee, Jang-Baek;Moon, Sung-Gil
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.99-105
    • /
    • 2018
  • Soils are generally classified as fine-grained or coarse-grained depending on the percentage content of the primary constituents. In reality, soils are actually made up of mixed and composite constituents. Soils primarily classified as fine-grained, still consists of a range of coarse particles as secondary constituents in between 0% to 50%. A laboratory scale model test was conducted to investigate the influence of coarse particles on the physical (e.g., density, water content, and void ratio) and mechanical (e.g., quick undrained shear strength) properties of primarily classified fine-grained cohesive soils. Pure kaolinite clay and sand-mixed kaolinite soil (e.g., sand content: 10%, 20%, and 30%) having various water contents (60%, 65%, and 70%) were preconsolidated at different stress levels (0, 13, 17.5, 22 kPa). The quick undrained shear strength properties were determined using the conventional Static Cone Penetration Test (SCPT) method and the new Fall Cone Test (FCT) method. The corresponding void ratios and densities with respect to the quick undrained shear strength were also observed. Correlations of the physical properties and quick undrained shear strengths derived from the SCPT and FCT were also established. Comparison of results showed a significant relationship between the two methods. From the results of FCT and SCPT, there is a decreasing trend of quick undrained shear strength, strength increase ratio ($S_u/P_o$), and void ratio (e) as the sand content is increased. The quick undrained shear strength generally decreases with increased water content. For the same water content, increasing the sand content resulted to a decrease in quick undrained shear strength due to reduced adhesion, and also, resulted to an increase in density. Similarly, it is observed that the change in density is distinctively noticeable at sand content greater than 20%. However, for sand content lower than 10%, there is minimal change in density with respect to water content. In general, the results showed a decrease in quick undrained shear strength for soils with higher amounts of sand content. Therefore, as the soil adhesion is reduced, the cone penetration resistances of the FCT and SCPT reflects internal friction and density of sand in the total shear strength.

A Study on the Undrained Characteristics of Highly plastic soils II: Factors on Strength (고소성토의 비배수 특성에 관한 연구 II: 비배수강도 영향요소)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4253-4258
    • /
    • 2012
  • The investigation of the undrained strength and the important several undrained geotechnical properties was, in detail, made for highly plastic soils using the field and laboratory testing results. The plastic index, activity, water content, and effective unit weight did not show the notable relationship with both Su and normalized Su. The OCR, sensitivity, and undrained elastic modulus presented remarkable tendency with normalized Su. It could be concluded that the use of the normalized Su may lead to the reasonable results then the normalized Su needs further research.

Characteristics of Behavior of Pressurized light-weight steel Anchor according to undrained shear strength (비배수 전단강도에 따른 압입식 경량강재앵커블록의 거동 특성)

  • Heo, Yol;Ahn, Kwang-Kuk;Park, Kyoung-Soo;Lee, Yong-Jun;Kang, Hong-Sig
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.219-224
    • /
    • 2009
  • In this study, the characteristics of pullout behavior of Pressurized light-weight steel Anchor was investigated through centrifuge model tests considering pull-out angle $0^{\circ}$ with changing undrained shearstrength(0~1, 2~4, 5~7kPa) of clay. According to the results of tests, the yield pullout load of clay ground was gradually increased up to 30% as undrained shear strength was increased. Therefore, it was known that the yield pullout load was affected by increasing the undrained shear strength, in addition, the pattern of behavior was not changed.

  • PDF

Assessment on Design Applicability of Analysis of the Undrained Shear Strength in Korea Coastal Marine Clay (국내 해성점토의 비배수 전단강도 분석을 통한 설계 적용성 평가)

  • Kim, Myeong Hwan;Song, Chang Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.61-71
    • /
    • 2016
  • This study performed the physical and mechanical experiment on the samples of costal marine clays individually collected in western and southern regions to identify the characteristics of western and southern costal marine clay. Based on the experiment result, the characteristics of costal marine clay is identified undrained shear strength. Based on the experiment result on the physical and mechanical characteristics of costal marine clays, the regression is presented that can analyze the mechanical characteristics of undrained shear strength in costal marine clay of Korea, region of Korea and western-southern region. The correlation of uniaxial compressive strength and undrained shear strength was suitable for use of western-southern region correlation equation. The test result of Jeonnam Yeosu area compares with prediction results of previous researchers formula and western-southern region formula. Prediction results appear highest reliability on the 0.827 of coefficient of determination in the prediction results of the western-southern region formula.

Probabilistic bearing capacity of circular footing on spatially variable undrained clay

  • Kouseya Choudhuri;Debarghya Chakraborty
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.93-106
    • /
    • 2024
  • The present paper investigates the spatial variability effect of soil property on the three-dimensional probabilistic characteristics of the bearing capacity factor (i.e., mean and coefficient of variation) of a circular footing resting on clayey soil where both mean and standard deviation of undrained shear strength increases with depth, keeping the coefficient of variation constant. The mean trend of undrained shear strength is defined by introducing the dimensionless strength gradient parameter. The finite difference method along with the random field and Monte Carlo simulation technique, is used to execute the numerical analyses. The lognormal distribution is chosen to generate random fields of the undrained shear strength. In the study, the potential failure of the structure is represented through the failure probability. The influences of different vertical scales of fluctuation, dimensionless strength gradient parameters, and coefficient of variation of undrained shear strength on the probabilistic characteristics of the bearing capacity factor and failure probability of the footing, along with the probability and cumulative density functions, are explored in this study. The variations of failure probability for different factors of safety corresponding to different parameters are also illustrated. The results are presented in non-dimensional form as they might be helpful to the practicing engineers dealing with this type of problem.

Determination of Undrained Shear Strength using Miniature Cone and T-bar Penetrometers for Kaolin Clay (소형콘과 T-bar 관입기를 이용한 카올린 점토의 비배수전단강도 산정에 관한 연구)

  • Sespene, Shemelyn;Choo, Yun Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.429-438
    • /
    • 2018
  • Cone and T-bar penetrometers have been frequently used to estimate the undrained shear strength of clay. For small-size model tests, miniature penetrometers should be used but their correlation factors have not been well published. In this study, a testing setup was developed to derive empirical factors of the miniature cone and T-bar penetrometers. A 350mm-diameter chamber and kaolin clay were utilized to prepare soil specimens consolidated under four different pre-consolidation pressures controlling undrained shear strength. Two miniature cones with two diameters of 10-mm and 16-mm and a T-bar penetrometer with 10-mm diameter were used to investigate boundary effect, penetration rate effect, and diameter and shape effect. Unconsolidated-undrained triaxial tests were carried out with samples taken from the specimens to measure undrained shear strength. Finally, empirical factors for the penetrometers were constructed to correlate tip resistance to undrained shear strength.

Feasibility of Artificial Neural Network Model Application for Evaluation of Undrained Shear Strength from Piezocone Measurements (피에조콘을 이용한 점토의 비배수전단강도 추정에의 인공신경망 이론 적용)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.287-298
    • /
    • 2003
  • The feasibility of using neural networks to model the complex relationship between piezocone measurements and the undrained shear strength of clays has been investigated. A three layered back propagation neural network model was developed based on actual undrained shear strengths, which were obtained from the isotrpoically and anisotrpoically consolidated triaxial compression test(CIUC and CAUC), and piezocone measurements compiled from various locations around the world. It was validated by comparing model predictions with measured values about new piezocone data, which were not previously employed during development of model. Performance of the neural network model was compared with conventional empirical method, direct correlation method, and theoretical method. It was found that the neural network model is not only capable of inferring a complex relationship between piezocone measurements and the undrained shear strength of clays but also gives a more precise and reliable undrained shear strength than theoretical and empirical approaches. Furthermore, neural network model has a possibility to be a generalized relationship between piezocone measurements and undrained shear strength over the various places and countries, while the present empirical correlations present the site specific relationship.