• Title/Summary/Keyword: Underwater structure

Search Result 363, Processing Time 0.029 seconds

Survey of coastal topography using images from a single UAV (단일 UAV를 이용한 해안 지형 측량)

  • Noh, Hyoseob;Kim, Byunguk;Lee, Minjae;Park, Yong Sung;Bang, Ki Young;Yoo, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1027-1036
    • /
    • 2023
  • Coastal topographic information is crucial in coastal management, but point measurment based approeaches, which are labor intensive, are generally applied to land and underwater, separately. This study introduces an efficient method enabling land and undetwater surveys using an unmanned aerial vehicle (UAV). This method involves applying two different algorithms to measure the topography on land and water depth, respectively, using UAV imagery and merge them to reconstruct whole coastal digital elevation model. Acquisition of the landside terrain is achieved using the Structure-from-Motion Multi-View Stereo technique with spatial scan imagery. Independently, underwater bathymetry is retrieved by employing a depth inversion technique with a drone-acquired wave field video. After merging the two digital elevation models into a local coordinate, interpolation is performed for areas where terrain measurement is not feasible, ultimately obtaining a continuous nearshore terrain. We applied the proposed survey technique to Jangsa Beach, South Korea, and verified that detailed terrain characteristics, such as berm, can be measured. The proposed UAV-based survey method has significant efficiency in terms of time, cost, and safety compared to existing methods.

Variations in algal distribution and diversity in oceanic island and inland freshwater reservoirs : a step toward for securing diverse freshwater resources (섬 및 내륙 담수지 내 조류 분포 및 다양성 변화 조사 : 다양한 담수원 확보를 위한 첫걸음)

  • Jong Myong Park;Yoo-Kyeong Kim;A Hyun Lee;Hee-Jeong Lee;Yeon-Ja Koh;Nam-Soo Jun;Wan-Soon Kwack
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.63-86
    • /
    • 2024
  • This study analyzed the distribution, diversity, and density variation of algal clusters in a freshwater reservoir from an oceanic island and a traditional inland water system to gain insights on future marine freshwater resource management. In the Paldang water system (Han River), despite the upstream Paldang Dam and the downstream Jamsil underwater reservoir being in the same meteorological zone, their algae density patterns varied inversely. The distinct algal cluster structure (diversity/dominance) of Paldang was altered in the downstream reservoir, suggesting that physical devices aid algae management in traditional water systems. In contrast, 24 out of 35 genera (63.2%) identified in the Jeolgol Reservoir (Baeknyeong Island) were unique, lacking regulatory mechanisms, and existing in a complex ecotone. The desmid Chlorophyceae Cosmarium, adapted to higher photosynthetic stress and low temperatures, dominated in January (38.04%) and August (86.45%) during the periods of extreme photosynthetic stress. Jeolgol's annual algal cluster structure (H' 2.097; D 0.259; S' 35) demonstrated higher stability than Paldang (H' 1.125; D 0.448; S' 13) and the Jamsil underwater reservoir (H' 1.078; D 0.469; S' 12), maintaining an H' above 1.5 even during midwinters. No evidence of TN/TP inflow from surrounding soils was observed, even during torrential rainfalls, with phosphorus being the limiting factor for algal growth. TOC, BOD, chlorophyll-a, and turbidity peaked during Cosmarium bloom. Future climate change is expected to cause fluctuations in algal clusters and related water quality factors. The complex transitional nature of the Jeolgol Reservoir, its algal diversity, and the interspecies interactions contribute to the high stability of its algal community.

A Case Study on Design and Construction of Cofferdam for Hydraulic Structure (수중구조물을 위한 가물막이 설계 및 시공사례에 대한 연구)

  • Cho, Joo-Hwan;Shin, Dong-Hoon;Jeong, Seung-Tai;Woo, Sang-Yoon;Nam, Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.124-143
    • /
    • 2010
  • Cofferdam is a temporary levee or dam structure built by using sheet pile or earth materials to prevent water infiltration during construction work of bridge, dam, harbour dock, or hydraulic structures in the river. In this regard, it is required to secure cutoff ability for dry work and workability for rapid installation and removal of the temporary dam or levee structures. In this paper, case studies for design and construction of cofferdam were performed, and water diversion method was briefed with some examples of cofferdam type as well. For the case study details of design and construction were reviewed based on cofferdams under construction related to 16 submerged weirs of "The 4-river restoration project" and dam type cofferdam respectively. From the review, it was known that the method for changing the water flow is selected based on the data from geological and geo-hydraulic site investigation in order to mitigate environmental effects by making sure if the design cross-sectional area of flow and maximum working days are sufficiently guaranteed. Finally, the primary findings and main conclusion derived are summarized that determination of applicable type of cofferdam should be checked by case study and meet design requirements such as water inflow control, constructability.

  • PDF

The development of basic structure of jellyfish separator system for a trawl net (트롤어구용 해파리 분리 배출장치 기본 구조 개발)

  • Kim, In-Ok;An, Heui-Chun;Shin, Jong-Keun;Cha, Bong-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.2
    • /
    • pp.99-111
    • /
    • 2008
  • The purpose of this study is to develop the jellyfish separator system(JSS) for reducing fishery damage by the increase of jellyfish in the sea area of Korea in summer. First of all, to find the optimum structure of a JSS, six types of JSS in trawl fishery were designed and manufactured, the underwater shape of JSS and the separating process by JSS were observed in the circulating water channel(CWC). And the field experiments were carried out in July and September 2004 in the southern sea of Korea. For the moving path of the jellyfish model in the CWC, in case that the model was larger than the mesh size of the separator net, it was guided toward the lower part of the separator net by the guiding net and discharged through the outlet. In case that the model was smaller than the mesh size of the separator net, some models which passed through the upper part of the guiding net were smaller than the mesh size of the guiding net and discharged through the outlet and most of the model which passed through the lower part of the guiding net moved to the codend passing through the separator net. According to the field experiment result, the optimum tilt angle of separator net was inferred $20^{\circ}$ that the discharge rate of jellyfish was higher than the other tilt angle of separator net and the optimum structure of JSS was inferred GS type(consists of guiding net and separator net) that the discharge rate of jellyfish was higher than S type(consists of separator net). It was demamded to carry out more study for the countermeasure to reduce loss of fish.

Vertical Variation of Sediment Structure and Geochemical Characteristics of Core Sediment in Nakdong River Midstream (낙동강 중류의 주상퇴적물에서 나타나는 퇴적 구조와 지화학적 특성의 수직적 변화)

  • Kim, Shin;Lee, Kyu Yeol;Kim, Ju Eon;Lee, Kwon Chul;Ahn, Jung Min;Lee, Injung;Jung, Kang Young;Im, Tae Hyo
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.304-312
    • /
    • 2015
  • In this study, we tried to determine the vertical variation of sediment structure and geochemical characteristics, core sediment was collected in the Nakdong River midstream on August, 2014. Core sediment mainly composed of sand (51.48%) and silt (46.21%) and coarsing upward changed from sM to mS facies. IL and TOC were decreased from lower to upper layer. C/N ratio was lower than 10 so the organic matters were originated from underwater creatures and C/S ratio was decreased from lower to upper layer. Heavy metal (Al, Fe, Zn, Cr, Pb, Ni, Cu, Cd) content were decreased from lower to upper layer and seriously polluted condition is not. These results are thought to be due to the effect of natural and anthropogenic in the fluctuation of flow.

A Study on Improvement of Submarine Attack Periscope Operation Performance using Installing Protector on Sail (잠수함 공격잠망경 함교 보호구조물 설치를 통한 장비 운용성능 향상에 관한 연구)

  • Choi, Woo-Seok;Chang, Ho-Seong;Lee, Young-Suk;Kim, Sang-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.199-206
    • /
    • 2021
  • This paper describes the feasibility and reliability verification of installing a protective structure to protect attack periscopes. The attack periscope is the critical equipment of a submarine to enable the user to monitor surface and air activity, collect navigational data, and detect and identify targets. The attack periscope provides target information acquired through TV, IR camera, and laser range finder to the combat system. In the product improvement program, the upper part of the masts was exposed to the outside of the sail because the existing attack periscope was replaced with a new one. On the other hand, the head sensor can be damaged by floating objects, such as fishing nets, during sea navigation. Therefore, the installation of a protective structure for an attack periscope improved the equipment operation performance. The feasibility and reliability of the installation of the protective structure were verified by examining the influence of URN.

DATCN: Deep Attention fused Temporal Convolution Network for the prediction of monitoring indicators in the tunnel

  • Bowen, Du;Zhixin, Zhang;Junchen, Ye;Xuyan, Tan;Wentao, Li;Weizhong, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.601-612
    • /
    • 2022
  • The prediction of structural mechanical behaviors is vital important to early perceive the abnormal conditions and avoid the occurrence of disasters. Especially for underground engineering, complex geological conditions make the structure more prone to disasters. Aiming at solving the problems existing in previous studies, such as incomplete consideration factors and can only predict the continuous performance, the deep attention fused temporal convolution network (DATCN) is proposed in this paper to predict the spatial mechanical behaviors of structure, which integrates both the temporal effect and spatial effect and realize the cross-time prediction. The temporal convolution network (TCN) and self-attention mechanism are employed to learn the temporal correlation of each monitoring point and the spatial correlation among different points, respectively. Then, the predicted result obtained from DATCN is compared with that obtained from some classical baselines, including SVR, LR, MLP, and RNNs. Also, the parameters involved in DATCN are discussed to optimize the prediction ability. The prediction result demonstrates that the proposed DATCN model outperforms the state-of-the-art baselines. The prediction accuracy of DATCN model after 24 hours reaches 90 percent. Also, the performance in last 14 hours plays a domain role to predict the short-term behaviors of the structure. As a study case, the proposed model is applied in an underwater shield tunnel to predict the stress variation of concrete segments in space.

Interference of Acoustic Signals Due to Internal Waves in Shallow Water

  • Na, Young-Nam;Jurng, Mun-Sub;Taebo Shim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3E
    • /
    • pp.9-20
    • /
    • 1999
  • To investigate the characteristics of internal waves (IWs) and their effects on acoustic wave propagation, a series of sea experiment were performed in the east coast of Donghae city, Korea in 1997 and 1998 where the water depth varies between 130 and 140 m. Thermistor strings were deployed to measure water temperatures simultaneously at 9 depths. CW source signals with the frequencies of 250,670 and 1000 Hz were received by an array of 15 hydrophones. Through the Wavelet transform analysis, the IWs are characterized as having typical periods of 2-17 min and duration of 1-2 hours. The IWs exist in a group of periods rather than in one period. Underwater acoustic signals also show obvious energy peaks in the periods of less than 12 min. Consistency in the periods of the two physical processes implies that acoustic waves react to the IWs through some mechanisms like mode interference and travel time fluctuation. Based on the thermistor string data, mode arriving structures are analyzed. As thermocline depth varies with time, it may cause travel time difference as much as 4-10 ms between mode 1 and 2 over 10 km range. This travel time difference causes interference among modes and thus fluctuation from range-independent stratified ocean structure. In real situations, however, there exist additional spatial variation of IWs. Model simulations with all modes and simple IWs show clear responses of acoustic signals to the IWs, i.e., fluctuations of amplitude and phase.

  • PDF

Investigation of Target Echoes in Multi-static SONAR System - Part I : Design for Acoustic Measuring System (다중상태 소나시스템을 적용한 표적반향음 연구 - Part I : 측정시스템 설계)

  • Bae, Ho Seuk;Ji, Yoon Hee;Kim, Wan-Jin;Kim, Woo-Shik;Kim, Jea Soo;Yun, Sung-Ung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.429-439
    • /
    • 2014
  • The target echoes contain information on the target such as the orientation, kinematics, and internal structure, as well as the external geometrical shape of the target. In addition, the pattern of the target echoes depends on the arrangement of the transmitters and receivers in space. Therefore, the study of the target echoes in a multi-static SONAR system can be useful for detecting and tracking submerged objects using an underwater surveillance system. For this purpose, an acoustic measuring system for multi-static target echoes was designed and tested in an acoustic water tank. Some preliminary data are presented and discussed.

Characteristics of Electrolytic Ion Water Generation due to the electrical-conductivity of a liquid medium (액상 매질의 전기전도도 변화에 의한 전해이온수 발생 특성)

  • Shin, Dong-Hwa;Ju, Jae-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.257-263
    • /
    • 2017
  • The following thesis researched into the characteristics of electrolytic ion water with different levels of electrical conductivity by adding NaCl into tap water which is for experimental use in multi-layered electrolytic ion water generator. Electrolytic ion water is generated by underwater electrolysis and the electrolysis generator has a simple structure, is easy to control and is highly utilized in industries. Electrolytic ion water is useful in many areas since it has a superior sterilizing power, has no possibility of secondary pollution itself as water and removes active oxygen. In the experiment, we used tap water with NaCl excluded and water with three different levels of electrical conductivity by changing NaCl concentration levels into three levels. The features of current and voltage in electrolytic ion water represented a form of quadric instead of the linear characteristic following ohm's law. As well, as the electric conductivity of water and applied voltage increased, we were able to generate much stronger acid water and alkali water.