• Title/Summary/Keyword: Underwater simulation

Search Result 617, Processing Time 0.028 seconds

Faster-than-real-time Hybrid Automotive Underwater Glider Simulation for Ocean Mapping

  • Choi, Woen-Sug;Bingham, Brian;Camilli, Richard
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.3
    • /
    • pp.441-450
    • /
    • 2022
  • The introduction of autonomous underwater gliders (AUGs) specifically addresses the reduction of operational costs that were previously prohibited with conventional autonomous underwater vehicles (AUVs) using a "scaling-down" design philosophy by utilizing the characteristics of autonomous drifters to far extend operation duration and coverage. Long-duration, wide-area missions raise the cost and complexity of in-water testing for novel approaches to autonomous mission planning. As a result, a simulator that supports the rapid design, development, and testing of autonomy solutions across a wide range using software-in-the-loop simulation at faster-than-real-time speeds becomes critical. This paper describes a faster-than-real-time AUG simulator that can support high-resolution bathymetry for a wide variety of ocean environments, including ocean currents, various sensors, and vehicle dynamics. On top of the de facto standard ROS-Gazebo framework and open-sourced underwater vehicle simulation packages, features specific to AUGs for ocean mapping are developed. For vehicle dynamics, the next-generation hybrid autonomous underwater gliders (Hybrid-AUGs) operate with both the buoyancy engine and the thrusters to improve navigation for bathymetry mappings, e.g., line trajectory, are is implemented since because it can also describe conventional AUGs without the thrusters. The simulation results are validated with experiments while operating at 120 times faster than the real-time.

Dynamic modeling and three-dimensional motion simulation of a disk type underwater glider

  • Yu, Pengyao;Wang, Tianlin;Zhou, Han;Shen, Cong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.318-328
    • /
    • 2018
  • Disk type underwater gliders are a new type of underwater gliders and they could glide in various directions by adjusting the internal structures, making a turnaround like conventional gliders unnecessary. This characteristic of disk type underwater gliders makes them have great potential application in virtual mooring. Considering dynamic models of conventional underwater gliders could not adequately satisfy the motion characteristic of disk type underwater gliders, a nonlinear dynamic model for the motion simulation of disk type underwater glider is developed in this paper. In the model, the effect of internal masses movement is taken into consideration and a viscous hydrodynamic calculation method satisfying the motion characteristic of disk type underwater gliders is proposed. Through simulating typical motions of a disk type underwater glider, the feasibility of the dynamic model is validated and the disk type underwater glider shows good maneuverability.

Measurement of Moving Object Velocity and Angle in a Quasi-Static Underwater Environment Through Simulation Data and Spherical Convolution (시뮬레이션 데이터와 Spherical Convolution을 통한 준 정적인 수중환경에서의 이동체 속도 및 각도 측정)

  • Baegeun Yoon;Jinhyun Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • In general, in order to operate an autonomous underwater vehicle (AUV) in an underwater environment, a navigation system such as a Doppler Log (DVL) using a Doppler phenomenon of ultrasonic waves is used for speed and direction estimation. However, most of the ultrasonic sensors in underwater is large for long-distance sensing and the cost is very high. In this study, not only canal neuromast on the fish's lateral lines but also superficial neuromast are studied on the simulation to obtain pressure values for each pressure sensor, and the obtained pressure data is supervised using spherical CNN. To this end, through supervised learning using pressure data obtained from a pressure sensor attached to an underwater vehicle, we can estimate the speed and angle of the underwater vehicle in a quasi-static underwater environment and propose a method for a non-ultrasonic based navigation system.

The Modeling and Simulation for Pseudospectral Time-Domain Method Synthetic Environment Underwater Acoustics Channel applied to Underwater Environment Noise Model (수중 환경 소음 모델이 적용된 의사 스펙트럼 시간영역 법 합성환경 수중음향채널 모델링 및 시뮬레이션)

  • Kim, Jang-Eun;Kim, Dong-Gil;Han, Dong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • It is necessary to analyze underwater acoustics channel(UAC) modeling and simulation for underwater weapon system development and acquisition. In order to analyze UAC, there are underwater acoustics propagation numerical analysis models(Ray theory, Parabolic equation, Normal-mode, Wavenumber integration). However, If these models are used for multiple frequency signal analysis, they are inaccurate to calculate result of analysis effectiveness and restricted for signal processing and analysis. In this paper, to overcome this problem, we propose simple/multiple frequency signal analysis model of the Pseudospectral Time-Domain Method synthetic environment UAC applied to underwater environment noise model as like as realistic underwater environment. In order to confirm the validation of the model, we performed the 9 scenarios simulation(4 scenarios of single frequency signal, 4 scenarios of multiple frequency signal, 1 scenario of single/multiple frequency signal like submarine radiated noise) for validation and confirmed the validation of this model through the simulation model.

Transmission Performance of MANET on 3D Underwater Communication Environments (3D 수중통신환경에서 MANET의 전송성능)

  • Kim, Young-Dong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.997-1002
    • /
    • 2017
  • Underwater communication, which is used acoustic channel of 1500[m/s] speed being different of wireless electric wave in terrestrial communication, is sensitive on water temperature and salinity and also affected from 3D underwater space. 3D underwater communication is sensitive on propagation loss of acoustic wave and underwater noise with complexity of communication space. In this paper, transmission performance with consideration of these characteristics of 3D underwater communication environments is measured and analyzed on MANET operated on 3D underwater communication environments. Some underwater MANET operation conditions will be suggested. Computer simulation with underwater simulator based on NS-2 will be used for performance measure, performance parameter like as throughput, transmission delay, packet loss rate and consumed energy will be used in simulation for performance measure.

Design of an Underwater Target Simulator (수중표적 시뮬레이터설계)

  • 조내현;예윤해;정연모
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.4
    • /
    • pp.17-24
    • /
    • 2003
  • In this paper, we propose a model that simulates the reflective waveform from underwater objects by means of Doppler effect, highlight and elongation phenomenon. Also, this paper presents a hardware Implementation of simulation model with the input and output parameters. The underwater target simulator consists of transducer, receiver, transmitter and control parts. According to the experimental results of the simulator, it carried out the performances of real target in response to transmission signal.

  • PDF

APPLICATION OF AN IMMERSED BOUNDARY METHOD TO SIMULATING FLOW AROUND TWO NEIGHBORING UNDERWATER VEHICLES IN PROXIMITY (인접한 두 수중운동체 주위의 유동 해석을 위한 가상경계법의 적용)

  • Lee, K.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Analysis of fluid-structure interaction for two nearby underwater vehicles immersed in the sea is quite challenging because simulation of flow around them is very difficult due to the complexity of underwater vehicle shapes. The conventional approach using body-fitted or unstructured grids demands much time in dynamic grid generation, and yields slow convergence of solution. Since an analysis of fluid-structure interaction must be based on accurate simulation results, a more efficient way of simulating flow around underwater vehicles, without sacrificing accuracy, is desirable. An immersed boundary method facilitates implementation of complicated underwater-vehicle shapes on a Cartesian grid system. An LES modeling is also incorporated to resolve turbulent eddies. In this paper, we will demonstrate the effectiveness of the immersed boundary method we adopted, by presenting the simulation results on the flow around a modeled high-speed underwater vehicle interacting with a modeled low-speed one.

Study on the fluid resistance coefficient for control simulation of an underwater vehicle (수중로봇 제어 시뮬레이션을 위한 유체저항계수 연구)

  • Park, Sang-Wook;Kim, Min-Soo;Sohn, Jeong-Hyun;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • Remotely operated vehicles or autonomous underwater vehicles have been used for exploiting seabed natural resources. In this study, the autonomous underwater vehicle of hovering type(HAUV) is developed to observe underwater objects in close distance. A dynamic model with six degrees of freedom is established, capturing the motion characteristics of the HAUV. The equations of motion are generated for the dynamic control simulation of the HAUV. The added mass, drag and lift forces are included in the computer model. Computational fluid dynamics simulation is carried out using this computer model. The drag coefficients are produced from the CFD.

Dynamic Simulation of Underwater Vehicle-Manipulator Systems Using Principle of Dynamical Balance (동적 발란스의 원리를 이용한 수중 잠수정-매니퓰레이터 시스템의 동역학 시뮬레이션)

  • Han, Jong-Hui;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.152-160
    • /
    • 2007
  • In this paper, two schemes are introduced for dynamic simulation of underwater robotic systems. One is principle of dynamical balance, which is an easy and powerful tool for formulating dynamic equations of composite systems such as underwater vehicle-manipulator system. In the dynamic modeling, this principle gives us the closed-form of dynamic equations on matrix Lie group. The other is geometric integration algorithm, called 4-th order explicit Munthe-Kaas method. By this method, the derived differential equations can be integrated preserving geometric structure. Adopting these two schemes, dynamic simulation of underwater vehicle- manipulator system can be conducted more easily and more reliably.

  • PDF

A Study on Operational Method of a HMS (HMS 운용방안에 관한 연구)

  • Shin, Seoung Chul;Lee, Chul Mok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.586-593
    • /
    • 2012
  • The Navy is in the process of developing a sonar-operation strategy to increase the effectiveness of underwater target searching capability. HMS is the basic strategy to detect underwater targets. The advantages of HMS is that, it has a short preparation time to operate and can be always used regardless of sea conditions and weather. However, it is difficult to effectively detect underwater targets due to the interaction between marine environments and sonar-operations. During the research, the effectiveness of the HMS system's underwater target searching capability was analyzed by integrating various search and defense patterns, and environment conditions into the simulation. In the simulation the ship search an evasive target within a set region. The simulation presented results for an effective searching and defense methods of underwater targets. These research results can be used as foundation for advancing and improving the sonar operational tactics.