• 제목/요약/키워드: Underwater shape

검색결과 148건 처리시간 0.024초

A New Approach to the Design of An Adaptive Fuzzy Sliding Mode Controller

  • Lakhekar, Girish Vithalrao
    • International Journal of Ocean System Engineering
    • /
    • 제3권2호
    • /
    • pp.50-60
    • /
    • 2013
  • This paper presents a novel approach to the design of an adaptive fuzzy sliding mode controller for depth control of an autonomous underwater vehicle (AUV). So far, AUV's dynamics are highly nonlinear and the hydrodynamic coefficients of the vehicles are difficult to estimate, because of the variations of these coefficients with different operating conditions. These kinds of difficulties cause modeling inaccuracies of AUV's dynamics. Hence, we propose an adaptive fuzzy sliding mode control with novel fuzzy adaptation technique for regulating vertical positioning in presence of parametric uncertainty and disturbances. In this approach, two fuzzy approximator are employed in such a way that slope of the linear sliding surface is updated by first fuzzy approximator, to shape tracking error dynamics in the sliding regime, while second fuzzy approximator change the supports of the output fuzzy membership function in the defuzzification inference module of fuzzy sliding mode control (FSMC) algorithm. Simulation results shows that, the reaching time and tracking error in the approaching phase can be significantly reduced with chattering problem can also be eliminated. The effectiveness of proposed control strategy and its advantages are indicated in comparison with conventional sliding mode control FSMC technique.

Effect of Pretension on Moored Ship Response

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • International Journal of Ocean System Engineering
    • /
    • 제3권4호
    • /
    • pp.175-187
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like Exploration and drilling vessels, Production barges, Cable-laying vessels, Rock dumping vessels, Research and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modelled and tested in the wave basin. The pretensions of the lines are varied by altering the touchdown points and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs calculated for various situations provide better insight to the designer.

Model tests on the moored vessel with different moonpool shapes

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • Ocean Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.137-147
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like cable-laying vessels and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modeled and tested in the wave basin. The moored lines are provided with pre-tension and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs determined for various situations provide better insight to the designer. The experiments done in the wave basin may also be compared with a software package meant for handling moored floating bodies.

2차원 몰수체의 형상 변화에 따른 초월공동 수치해석 (Numerical Analysis of Supercavitation according to Shape Change of the Two-dimensional Submerged Body)

  • 박현지;김지혜;안병권
    • 대한조선학회논문집
    • /
    • 제55권1호
    • /
    • pp.1-8
    • /
    • 2018
  • A cavitator plays an important role to generate the supercavity. Most previous numerical and experimental studies have been focused on the presence of cavitators alone. However, the body behind the cavitator causes a change in the wake flow and hence it affects generation and growth of the supercavity. In this paper, we present a boundary elementary method based on a potential flow analysis, and calculate characteristics of the supercavity formation depending on the change of the body shape of two-dimensional submerged objects. Various parameters such as cone angle of the cavitator, length of the forehead and diameter of the body are considered. The results show that the longer the forepart length, the longer the cavity is created under the same conditions, and also the change in the diameter of the body is the most influential factor on the growth of the supercavity. As a result, we suggest that it is necessary to carefully consider the influence of the body shape during the initial design stage of the supercavitating underwater vehicle.

심해 저층트롤망의 수중형상에 관한 모형실험 (A model experiment on the underwater shape of deepsea bottom trawl net)

  • 박광제;이주희;김형석;정순범;오택윤;배재현
    • 수산해양기술연구
    • /
    • 제42권3호
    • /
    • pp.134-147
    • /
    • 2006
  • A model experiment using circulation water channel was carried out to investigate the dynamic characteristics of bottom trawl net which can be used in sea mount of North Pacific. Hydrodynamic resistance and shape variation according to the flow velocity and angle of hand rope transformation for net were measured, and experimental value was analyzed as the value of full-scale bottom trawl net. The results summarized are as follows; At the $30^{\circ}$ of angle of hand rope to net, hydrodynamic resistance varied from 0.5kgf to 2.68kgf as the flow velocity increased between 0.31m/s and 0.92m/s, and formula of hydrodynamic resistance for the model net was $F_m=3.04\;{\cdot}\;{\upsilon}^{1.53}$. At the fixed angle of hand rope, Net height was low and Net width was high according to the increase of flow velocity, and in addition, vertical opening was low and Net width was high by the increase of angle of hand rope at the fixed flow velocity. At the $30^{\circ}$ of angle of hand rope to net, net opening area was $0.214m^2$ as flow velocity was 0.61m/s, and formula of net opening area for the model net was $S_m=-0.22{\upsilon}+0.35$. At the $30^{\circ}$ of angle of hand rope to net, catch efficiency seemed to be highest as $0.319m^3/s$ of filtering volume at the 0.76m/s(51kt's) of flow velocity. Shape variation of net showed the gradual laminar transform for the variation of flow velocity but there needed some improvements due to the occurrence of shortening at the ahead of wing net.

몸체 형상이 수중운동체의 공동 발달과 항력특성에 미치는 영향에 대한 수치적 연구 (A Numerical Study of Effects of Body Shape on Cavity and Drag of Underwater Vehicle)

  • 김형태;강경태;최정규;정영래;김민재
    • 대한조선학회논문집
    • /
    • 제55권3호
    • /
    • pp.252-264
    • /
    • 2018
  • The calculation of steady-state cavitating flows around Supercavitating Underwater Bodies (SUB's), which consist of a circular disk head (cavitator), a conical fore-body, a cylindrical middle-body and either a boat-tail or a flare-tail, are carried out. To calculate the axisymmetric cavitating flow, used is a commercial computational fluid dynamics code based on the finite volume method, Fluent. From the analysis of numerical results, the cavity and drag, affected by the fore-body and tail of the SUB's, are investigated. Firstly, the effect of the fore-body shape is investigated with the same disk cavitator and a cylindrical rear-body of fixed diameter. Then with the same cavitator and a fixed fore-body, the effect of the rear-body shape is investigated. Before the cavity generated by the cavitator covers the slant of fore-bodies sufficiently, the larger the cone angle of the fore-body(i.e., the shorter the slant length), the larger the drag and the slower the development of cavity. After the cavity covers the fore-body completely so that the pressure drag component of the body is vanished, the characteristics of drag-velocity curves are identical. Also, as the tail angle is bigger, the cavity generated by the cavitator is suppressed further and the drag becomes larger. The peak of the drag appears for the flare-tail, i.e., when the tail angle is positive(+). On the contrary, the trough of the drag appears for the boat-tail, i.e., when the tail angle is negative(-). When the tail angle is 5 degrees, the peak of the drag appears at the body speed of 80m/s and the value of the drag is 43% larger than that at the design speed of 100m/s. When the tail angle is -5 degrees, the trough of the total drag appears at 75m/s and that drag is 30% smaller than that of the cavitator, which means the rest of the body has a negative drag.

동시베리아 샤만 복식-야쿠트인, 유카기르인, 골디인을 중심으로- (A Study on the shaman's costume of the east siberia.)

  • 박금주
    • 복식
    • /
    • 제22권
    • /
    • pp.85-96
    • /
    • 1994
  • The purpose of this research is to find out the role of shaman's costume in Yakut Yukachir Goldi. The results are as follows: 1. Yakut shaman's costumes are decorated by their worship symbols made from metals-wild ducks crucian carps diving beetles and fishes. They believe that these costumes help shamans to travel the heaven underwater or underground systems to collect wanted infor-mation transforming them into the shape of decorated animals. 2. Yukachir shaman's costumes are decorated by symbolized cross medals in the shape of birds and human designed backbone which give shamans much power and many different kinds of medals and tassels representing all sorts and conditions of shaman's power. They consider their cstumes as feather and believe they give them new power and make them to fly anywhere they want. 3. Goldi shaman's costumes have paintings of animal guradians-leopards tigers bears birds snakes lizards and so on. Birds represents freedom of the spirit and eternity. snakes represents rebirth and immorality and lizards represents the trees of underground the earth and the lifetrees of the heaven. Shamans ascend through th holy tree to th heaven and to the world of underground in a comatose condition. Shaman costume itself plays the role of the spiritual safeguard. Wearing their costume shaman get all animal's supernatural authority and power. This makes the shaman to contact with the spirit and to travel the heaven and the under-ground world.

  • PDF

몰수체 형상 설계인자에 따른 조종특성 연구 (Study on Maneuvering Characteristics of Submerged Body by Changing Its Design Parameters)

  • 전명준;윤현규;황준호;조현진
    • 한국해양공학회지
    • /
    • 제31권2호
    • /
    • pp.155-163
    • /
    • 2017
  • Submerged bodies moving underwater behave differently based on their type and assigned mission. This paper describes the dynamic characteristics, including the stability, turning ability, and operational ability, of submerged bodies in relation to design parameters such as the tail cone angle, shape of the control plate, and length of the parallel middle body. A submerged body operated in other countries is adopted as a reference for the dynamic characteristics, its principal dimensions and the shape of the bare hull and appendages are used for comparison. This paper suggests a few candidate hull forms based on changes in the typical design parameters. Finally, the dynamic characteristics for these candidate hull forms are defined.

캐비테이터와 몸체의 조합에 따라 발생하는 인공 초월공동에 대한 실험연구 (An Experimental Study on Artificial Supercavitation Generated by Different Combinations of the Cavitator and Body)

  • 정소원;박상태;안병권
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.327-334
    • /
    • 2019
  • Recently, there has been a growing interest in artificial supercavitation as a way to reduce friction drag of submerged vehicles. A cavitator plays an important role to generate the supercavity, so many studies have focused on the case of cavitator only. However, the body shape behind the cavitator affects the growth of the supercavity and this effect must be considered for evaluating the overall performance of the system. In this work, we conducted experimental investigation on artificial supercavitation generated by different combinations of the cavitator and body. We observed the supercavity pattern by using a high-speed camera and measured the pressure inside the cavity by using an absolute pressure transducer. We estimated the relation between the amount of injected air and the supercavity shape for different combinations. In summary, the disk type cavitator generates larger supercavity than that of the cone and ellipsoidal cavitators, but cavity development speed is relatively slower rather than the others. Furthermore, fore body angle plays an important role to generate the supercavity enveloping the entire body.

받음각을 갖는 3차원 캐비테이터에서 발생하는 비축대칭 초공동 유동해석 (Numerical Analysis of Non-Axisymmetric Supercavitating Flow Around a Three-Dimensional Cavitator with an Angle of Attack)

  • 황대규;안병권
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.240-247
    • /
    • 2023
  • In this study, morphological and hydrodynamic characteristics of the non-axisymmetric supercavity generated behind a disk-shaped cavitator were examined. By extending the previous study on axisymmetric supercavitating flow based on a boundary element method, hydrodynamic forces acting under the angle of attack condition of 0 to 30 ° and shape characteristics of the supercavity were analyzed. The results revealed that increasing the angle of attack by 30 ° reduced the length and width of the cavity by about 15% and the volume by about 40 %. An empirical formula that can quantitatively estimate the geometrical characteristics and change of the cavity was derived. It is expected that this method can be used to evaluate the shape information and force characteristics of the supercavity for the control of the vehicle in a very short time compared to the viscous analysis in the initial design stage of the supercavity underwater vehicle.