• Title/Summary/Keyword: Underwater sensor

Search Result 422, Processing Time 0.03 seconds

ToA Based Sensor Localization Algorithm in Underwater Wireless Sensor Networks (ToA 기법을 이용한 수중 무선 센서 네트워크에서의 센서 위치 측정)

  • Lee, Kang-Hoon;Yu, Chang-Ho;Choi, Jae-Weon;Seo, Young-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.641-648
    • /
    • 2009
  • Currently several kinds of sensor localization methods have been developed for terrestrial wireless sensor networks. This study, in order to extend the field to underwater environments, a localization technique is studied for UWSNs (Underwater Wireless Sensor Networks). In underwater environments, RF (Radio Frequency) signal is not suitable for underwater usage because of extremely limited propagation. Because of that reason UWSNs should be constituted with acoustic modems. But, to realize underwater application, we can borrow many design principles from ongoing research for terrestrial environments. So, in this paper we introduce the modified localization algorithm using ToA method which is based on the terrestrial research. First of all, we study the localization techniques for terrestrial environments where we investigate possible methods to underwater environment. And then the appropriate algorithm is presented in the underwater usage. Finally the proposed underwater based localization algorithm is evaluated by using computer.

Design and Performance Evaluation of Hierarchical Protocol for Underwater Acoustic Sensor Networks (수중음파 센서네트워크를 위한 계층별 프로토콜의 설계 및 성능 평가)

  • Kim, Ji-Eon;Yun, Nam-Yeol;Kim, Yung-Pyo;Shin, Soo-Young;Park, Soo-Hyun;Jeon, Jun-Ho;Park, Sung-Joon;Kim, Sang-Kyung;Kim, Chang-Hwa
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.157-166
    • /
    • 2011
  • As underwater environment monitoring system's interest has increased, the research is proceeding about underwater acoustic sensor network. Underwater sensor network can be applicable to many fields, such as underwater environment monitoring, underwater resource exploration, oceanic data collection, military purposes, etc. It is essential to define the PHY-MAC protocol for revitalization of the underwater acoustic sensor network which is available utilization in a variety of fields. However, underwater acoustic sensor network has to implement by consideration of underwater environmental characteristics, such as limited bandwidth, multi-path, fading, long propagation delay caused by low acoustic speed. In this paper, we define frequency of adjusted PHY protocol, network topology, MAC protocol, PHY-MAC interface, data frame format by consideration of underwater environmental characteristics. We also present system configuration of our implementation and evaluate performance based on our implementation with test in real underwater field.

Design of an Acoustic band Interpolator for Underwater Sensor Nodes (수중 센서 노드를 위한 음파 대역 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.93-98
    • /
    • 2020
  • Research on underwater sensor networks is increasing due to such reasons as marine resource management, maritime disaster prediction and military protection. Many underwater sensor networks performs wireless communication using an acoustic sound wave band signal having a relatively low frequency. So the digital part of their modem can take charge of carrier band signal processing. To enable this, the sampling rate of the baseband band signal should be increased to a sampling rate at which carrier band signal processing is possible. In this paper, we designed a sampling rate increasing circuit based on a CIC interpolator for underwater sensor nodes. The CIC interpolator has a simple circuit structure. However, since the CIC interpolator has a large attenuation of the pass band and a wide transition band, an inverse sinc LPF is added to compensate for frequency response of the CIC interpolator. The proposed interpolator was verified in time domain and frequency domain using ModelSim and Matlab.

Development of a Real-time Radiation Level Monitoring Sensor for Building an Underwater Radiation Monitoring System (수중 방사선 감시체계 구축을 위한 실시간 방사선 준위 모니터링 센서 개발)

  • Park, Hye Min;Joo, Koan Sik
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.96-100
    • /
    • 2015
  • In the present study, we developed a real-time radiation-monitoring sensor for an underwater radiation-monitoring system and evaluated its effectiveness using reference radiation sources. The monitoring sensor was designed and miniaturized using a silicon photomultiplier (SiPM) and a cerium-doped-gadolinium-aluminum-gallium-garnet (Ce:GAGG) scintillator, and an underwater wireless monitoring system was implemented by employing a remote Bluetooth communication module. An acrylic water tank and reference radiation sources ($^{137}Cs$, $^{90}Sr$) were used to evaluate the effectiveness of the monitoring sensor. The underwater monitoring sensor's detection response and efficiency for gamma rays and beta particles as well as the linearity of the response according to the gammaray intensity were verified through an evaluation. This evaluation is expected to contribute to the development of base technology for an underwater radiation-monitoring system.

Energy Efficient Data Transmission Algorithms in 2D and 3D Underwater Wireless Sensor Networks (2차원 및 3차원 수중 센서 네트워크에서 에너지 효율적인 데이터전송 알고리즘)

  • Kim, Sung-Un;Park, Seon-Yeong;Cheon, Hyun-Soo;Kim, Kun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1657-1666
    • /
    • 2010
  • Underwater wireless sensor networks (UWSN) need stable efficient data transmission methods because of environmental characteristics such as limited energy resource, limited communication bandwidth, variable propagation delay and so on. In this paper, we explain an enhanced hybrid transmission method that uses a hexagon tessellation with an ideal cell size in a two-dimensional underwater wireless sensor network model (2D) that consists of fixed position sensors on the bottom of the ocean. We also propose an energy efficient sensing and communication coverage method for effective data transmission in a three-dimensional underwater wireless sensor network model (3D) that equips anchored sensors on the bottom of the ocean. Our simulation results show that proposed methods are more energy efficient than the existing methods for each model.

Extended Kalman Filter-based Localization with Kinematic Relationship of Underwater Structure Inspection Robots (수중 구조물 검사로봇의 기구학적 관계를 이용한 확장 칼만 필터 기반의 위치추정)

  • Heo, Young-Jin;Lee, Gi-Hyeon;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.372-378
    • /
    • 2013
  • In this paper, we research the localization problem of the crawler-type inspection robot for underwater structure which travels an outer wall of underwater structure. Since various factors of the underwater environment affect an encoder odometer, it is hard to localize robot itself using only on-board sensors. So in this research we used a depth sensor and an IMU to compensate odometer which has extreme error in the underwater environment through using Extended Kalman Filter(EKF) which is normally used in mobile robotics. To acquire valid measurements, we implemented precision sensor modeling after assuming specific situation that robot travels underwater structure. The depth sensor acquires a vertical position of robot and compensates one of the robot pose, and IMU is used to compensate a bearing. But horizontal position of robot can't be compensated by using only on-board sensors. So we proposed a localization algorithm which makes horizontal direction error bounded by using kinematics relationship. Also we implemented computer simulations and experiments in underwater environment to verify the algorithm performance.

The Development and Performance Analysis of Multiple Signal Processing Circuit for Marine Installation Sensor (해양설비용 센서의 다중 신호처리 회로 개발 및 성능 분석)

  • Cho, Jeong-Hwan;Ko, Sung-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.84-89
    • /
    • 2014
  • This paper proposes the new multiple signal processing monitoring sensor for the marine installation. The recent marine technology is focused on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. For these marine applications to be available, however, the provision of precise location information using monitoring sensor is essential. In this paper, the multiple signal processing circuit for obtaining the precise location information of marine installation sensor is developed and analyzed. The performance characteristics for obtaining the location information of marine installation sensor is analyzed. The theoretical and experimental studies have been carried out. The presented results from the above investigation show considerably excellent performance for the monitoring for the marine installation.

Design of Internet of Underwater Things Architecture and Protocol Stacks

  • Muppalla, Kalyani;Yun, Nam-Yeol;Park, Soo-Hyun;Kim, Changhwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.486-488
    • /
    • 2013
  • In the earth more than half of the space filled with water. In that water most of the part is in the form of oceans. The ocean atmosphere determines climate on the land. Combining the Underwater Acoustic Sensor Network (UWASN) system with Internet Of Things (IoT) is called Internet of Underwater Things (IoUT). Using IoUT we can find the changes in the ocean environment. Underwater sensor nodes are used in UWASN. Underwater sensor nodes are constructive in offshore investigation, disaster anticipation, data gathering, assisted navigation, pollution checking and strategic inspection. By using IoT components such as Database, Server and Internet, ocean data can be broadcasted. This paper introduces IoUT architecture and and explains fish forming application scenario with this IoUT architecture.

The Underwater UUV Docking with 3D RF Signal Attenuation based Localization (UUV의 수중 도킹을 위한 전자기파 신호 기반의 위치인식 센서 개발)

  • Kwak, Kyungmin;Park, Daegil;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.199-203
    • /
    • 2017
  • In this paper, we developed an underwater localization system for underwater robot docking using the electromagnetic wave attenuation model. Electromagnetic waves are generally known to be impossible to use in water environment. However, according to the conclusions of the previous studies on the attenuation characteristics in underwater, the attenuation pattern is uniform and its model was accurately proposed and verified in 3-dimensional space via the omnidirectional antenna. In this paper, a docking structure and localization sensor system are developed for a widely used cone type docking mechanism. First, we fabricated electromagnetic wave range sensor transmit modules. And a mobile sensor node is equipped with unmanned underwater vehicle(UUV)s. The mobile node senses the four different signal strength (RSS: Received Signal Strength) from fixed nodes, and the obtained RSS data are transformed to each distance information using the 3-Dimensional EM wave attenuation model. Then, the relative localization between the docking area and underwater robot can be achieved according to optimization algorithm. Finally, experimental results show the feasibility of the proposed localization system for the docking induction by comparing the errors in the actual position of the mobile node and the theoretical position through the model.

MDS-based Localization Reflecting Depth, Temperature, and Salinity of Ocean in Underwater Acoustic Sensor Networks(UWASNs) (수중 센서 네트워크에서 수심, 수온, 염도를 고려한 환경에서 MDS를 이용한 위치인식 연구)

  • Jung, Hui-Sok;Kim, Eun-Chan;Yang, Yeon-Mo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.187-191
    • /
    • 2012
  • In these days, there are huge increases of concerning underwater acoustic sensor networks (UWASNs) to explore marine resources and to monitor climate change. To collect information from sensor nodes which are randomly deployed in underwater, Multi-Dimensional Scaling (MDS) based locating methods have been recently introduced, which consider sound speed to be constant in underwater. However, underwater sound speed tends to vary depending on underwater environment factors, such as depth, temperature, and salinity. In this paper, we propose a method considering environment factors, can influence upon sound speed in underwater, and introduce experimental setup which can follow up environmental factors.