• Title/Summary/Keyword: Underwater control system

Search Result 312, Processing Time 0.022 seconds

Developed Ethernet based image control system for deep-sea ROV (심해용 ROV를 위한 수중 원격 영상제어 시스템 개발)

  • Kim, Hyun-Hee;Jeong, Ki-Min;Park, Chul-Soo;Lee, Kyung-Chang;Hwang, Yeong-Yeun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.389-394
    • /
    • 2018
  • Remotely operated vehicle(ROV) and autonomous underwater vehicle(AUV) have been used for underwater surveys, underwater exploration, resource harvesting, offshore plant maintenance and repair, and underwater construction. It is hard for people to work in the deep sea. Therefore, we need a vision control system of underwater submersible that can replace human eyes. However, many people have difficulty in developing a deep-sea image control system due to the deep sea special environment such as high pressure, brine, waterproofing and communication. In this paper, we will develop an Ethernet based remote image control system that can control the image mounted on ROV.

QLQG/LTR Depth Control System Design for Underwater Vehicles (수중운동체를 위한 QLQG/LTR 심도 제어시스템 설계)

  • Kim, J.S.;Han, S.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.118-127
    • /
    • 1993
  • A nonlinear control design method called the QJQG/LTR method is presented for the depth control of underwater vehicles with the deadzone of the flow control valve. And, it is shown how the design plant model can be formulated in the QLQG/LTR depth control system design for underwater vehicles which have the triple integrator. In order to show the effectiveness of this control system, the linear LQG/LTR control system neglected the deadzone effect and the nonlinear QLQG/LTR control system considered it are compared. It is found that the QLQG/LTR control system is relatively insensitive to the input magnitude, even if there exists a hard nonlinearity in the plant.

  • PDF

Distributed control system architecture for deep submergence rescue vehicles

  • Sun, Yushan;Ran, Xiangrui;Zhang, Guocheng;Wu, Fanyu;Du, Chengrong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.274-284
    • /
    • 2019
  • The control architectures of Chuan Suo (CS) deep submergence rescue vehicle are introduced. The hardware and software architectures are also discussed. The hardware part adopts a distributed control system composed of surface and underwater nodes. A computer is used as a surface control machine. Underwater equipment is based on a multi-board-embedded industrial computer with PC104 BUS, which contains IO, A/D, D/A, eight-channel serial, and power boards. The hardware and software parts complete data transmission through optical fibers. The software part involves an IPC of embedded Vxworks real-time operating system, upon which the operation of I/O, A/D, and D/A boards and serial ports is based on; this setup improves the real-time manipulation. The information flow is controlled by the software part, and the thrust distribution is introduced. A submergence vehicle heeling control method based on ballast water tank regulation is introduced to meet the special heeling requirements of the submergence rescue vehicle during docking. Finally, the feasibility and reliability of the entire system are verified by a pool test.

A berthing control for underwater vehicle with velocity constraints (속도구속조건을 이용한 수중 이동체의 접안제어)

  • Nam Taek-Kun;Kim Chol-Seong;Roh Young-Oh;Park Young-San
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, we study the stabilization control if an underwater vehicle from its initial posture to its desired one. We assume tint the underwater vehicle has velocity constraint, i.e. it has no velocity component for some direction. Our approach is based on the nonholonomic system which am derived from velocity constraints that cannot integrable. We proposed a control strategy for posture control of the underwater vehicle using multi-rate digital control. The proposed control scheme is applied to the berthing control if an underwater vehicle and verified the effectiveness if control strategy by numerical simulation.

  • PDF

Study for Tracking Control of Autonomous Underwater Vehicle (AUV의 궤적제어에 관한 연구)

  • 유휘룡;김성근;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.56-63
    • /
    • 1994
  • This paper presents a design method of multivariable robust servo system for tracking control system for AUV(Autonomous Underwater Vehicle). In order to obtain the basic data for the design of the tracking control system, the control algorithm is evaluated in the view of computer simulation results. The tracking control is carried out for an AUV with 2 main thrusters, 2 side thrusters and 2 thrusters for the movement to up-down direction. The results of computer simulation show that the proposed multivariable servo system design method is an efficient method for the control performance of tracking control system of AUV under severe underwater environment.

  • PDF

Non-regressor Based Adaptive Tracking Control of an Underwater Vehicle-mounted Manipulator (수중 선체에 장착된 로봇팔 궤적의 비귀환형 적응제어)

  • 여준구
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.7-12
    • /
    • 2000
  • This paper presents a non-regressor based adaptive control scheme for the trajectory tracking of underwater vehicle-mounted manipulator systems(UVMS). The adaptive control system includes a class of unmodeled effects is applied to the trajectory control of an UVMS. The only information required to implement this scheme ios the upper bound and lowe bound of the system parameter matrices the upper bound of unmodeled effects the number of joints the position and attitude of the vehicle and trajectory commands. The adaptive control law estimates control gains defined by the combinations of the bounded constants of system parameter matrices and of a filtered error equation. To evaluate the performance of the non-regressor based adaptive controller computer simulation was performed with a two-link planar robot model mounted on an underwater vehicle. The hydrodynamic effects acting on the manipulator are included. It is assumed that the vehicle's motion is slow and can be predicted with a proper compensator.

  • PDF

Multivariable QLQC/LTR depth control of underwater vehicles with deadzone (사역대를 갖는 수중운동체의 다변수 QLQG/LTR 심도제어)

  • 한성익;김종식;최중락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.179-184
    • /
    • 1993
  • In general, for underwater vehicles in low speed, depthkeeping operations are carried out by using the variation of the weight in the seaway tank. The depthkeeping control of underwater vehicles is difficult because of the deadzone effect in the flow rate control valve. In this paper, the nonlinear multivariable QLQG/LTR control system using a seaway tank and bow planes is synthesized in order to improve the performance of the depth control system. The computer simulation results show the multivariable QLQG/LTR control system has good depth control performance under the deadzone effect.

  • PDF

Analysis of the Dynamic Characteristics of Pressurized Water Discharging System for Underwater Launch using ATP (수중발사를 위한 ATP 방식 압축수 방출시스템의 동특성 해석)

  • Han, Myung-Chul;Kim, Jung-Kwan;Kim, Kwang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.567-572
    • /
    • 2009
  • The underwater launch system using an ATP consists of five parts: compressor tank, proportional flow control servo valve, expulsion spool valve, air turbine pump, and discharge tube. The purpose of this study is to develop an underwater launch system using an ATP and to verify the validity of the system. The proportional flow control servo valve is modeled as a 2nd order transfer function. The projectile is ejected by pressurized water through the air turbine pump, which is controlled by expulsion valve. The mathematical model is derived to estimate the dynamic characteristics of the system, and the important design parameters are derived by using simulations. The computer simulation results show the dynamic characteristics and the possibility of control for underwater launch system.

A fuzzy sliding mode controller design for the hovering system of underwater vehicles (수중운동체의 호버링시스템을 위한 퍼지 슬라이딩 모드 제어기 설계)

  • Kim, Jong-Sik;Kim, Sung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Nonlinear depth control algorithms for the hovering system of underwater vehicles are presented. In this paper, a nonlinear effect in heave motion for underwater vehicles, a deadzone effect of the flow control valve in the hovering tank and an impact disturbance are considered. In this situation, in order to choose a desirable controller, sliding mode controller and fuzzy sliding mode controller are designed and compared. The computer simulation results show that the fuzzy sliding mode control system is more suitable in order to maintain a desirable depth of an underwater vehicle with a deadzone and impact disturbance.

  • PDF

Control of an Underwater Stereo Camera Embedded in a Single Canister Capable of Measuring Distance (거리측정이 가능한 단동형 수중 스테레오 카메라의 제어)

  • 이판묵;전봉환;이종무
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.90-95
    • /
    • 2000
  • This paper presents the vergence control of a parallel stereo camera and its application to underwater stereo camera to enhance the working efficiency of underwater vehicles that equips with manipulators in seabed operation. The stereo camera consists of two parallel lenses mounted on a lateral moving base and two CCD cameras mounted on a longitudinal moving base, which is embedded in a small pressure canister for underwater application. Because the lateral shift is related to the backward shift with a nonlinear relation, only one control input is needed to control the vergence and focus of the camera with a special driving device. We can get a clear stereo vision with the camera for all the range of objects in air and in water, especially in short range objects. The control system of the camera is so simple that we are able to realize a small stereo camera system and to apply it to a stereo vision system for underwater vehicles. This paper also shows how to acquire the distance information of an underwater object with this stereo camera. Whenever we focus on an underwater object with the camera, we can obtain the three-dimensional images and the distance information in real-time.

  • PDF