• Title/Summary/Keyword: Underwater acoustic communication channel

Search Result 158, Processing Time 0.019 seconds

An Implementation of Acoustic-based MAC Protocol Multichannel Underwater Communication Network

  • Lim, Yong-Kon;Park, Jong-Won;Kim, Chun-Suk;Lee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.1
    • /
    • pp.105-111
    • /
    • 1997
  • This Paper Proposes a new efficient system design strategies for the acoustic-based underwater multiple modem and media access control protocol. The system aims to establish the acoustic-based communication network of an underwater vehicles for deep sea mining, which ensures a certain level of maximum throughput regardless of the propagation delay of acoustic and allows fast data transmission through the acoustic-based multiple channel. A media access control protocol for integrated communication network and it's acoustic-based communication modems that allows 'peer-to-peer' communication between a surface mining plant multiple underwater system is designed, and the proposed media access control protocol is implemented for its verification. Furthermore, a proposed design strategies which make it possible to control the multiple vehicle for an underwater mining is presented in this paper.

  • PDF

Evaluation of Image Transmission for Underwater Acoustic Communication

  • Lee Seung-Woo;Choi Byung-Woong;Shin Chang-Hong;Kim Jeong-Soo;Lee Kyun-Kyung
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.110-113
    • /
    • 2004
  • Underwater acoustic(UWA) communication is one of the most difficult field because of several factors such as multipath propagation, high temporal and spatial variability of channel conditions. Therefore, it is important to model and analyze the characteristics of underwater acoustic channel such as multipath propagation, transmission loss, reverberation, and ambient noise. In this paper, UWA communication channel is modeled with a ray tracing method and applied to image transmission. Quadrature phase shift keying(QPSK) and multichannel decision feedback equalizer(DFE) are utilized as phase-coherent modulation method and equalization technique, respectively. The objective is to improve the performance of vertical sensor array than that of single sensor in the viewpoint of bit error rate(BER), constellation output, and received image quality.

  • PDF

Performance of Carrier Frequency Offset Compensation using CAZAC Code in Time and Spatial Variant Underwater Acoustic Channel (시·공간 변동 수중음향 채널에서 CAZAC 코드를 적용한 반송파 주파수 옵셋 보상 기법의 성능평가)

  • Park, Jihyun;Bae, Minja;Kim, Jongju;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1229-1236
    • /
    • 2016
  • In underwater acoustic multipath channel, a performance of underwater acoustic (UWA) communication systems is affected by dynamic variation of boundary and high temporal and spatial variability of the channel conditions. Time and spatial variations of UWA channel induce a carrier frequency offset (CFO) since a phase and a frequency of received signal mismatch with a transmitting signal. Therefore, a performance of a phase shift keying underwater acoustic communication system is degraded. In this study, we have analyzed a performance of CFO estimation and compensation using a phase code in time and spatial variation channel. A constant amplitude zero autocorrelation (CAZAC) signal is applied as a phase code signal and its performance is evaluated in water tank. The bit error rate of a quadrature phase shift keying (QPSK) system with a phase code is improved about 4 to 10 times better than that without a phase code.

The Study about Channel code to Overcome Multipath of Underwater Channel (수중통신채널에서 다중경로 극복을 위한 오류정정부호에 대한 연구)

  • Kim, Nam-Soo;Kim, Min-Hyuk;Park, Tae-Doo;Kim, Chul-Seung;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.738-745
    • /
    • 2009
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes receive signal to make error floor. In this paper, we propose the underwater communication system using various channel coding schemes such as RS coding, convolutional code, turbo code and concatenated code for overcoming the multipath effect in underwater channel. As shown in simulation results, characteristic of multipath error is similar to that of random error. So interleaver has not effect on error correcting. For correcting of error floor by multipath, it is necessary to use strong channel codes like turbo code. Turbo code is one of the iterative codes. And the performance of concatenated codes including RS code has better performance than using singular channel codes.

A Comparison of Symbol Error Performance for SC-FDE and OFDM Transmission Systems in Modeled Underwater Acoustic Communication Channel (모델링된 수중음향 채널환경에서 SC-FDE와 OFDM 전송방식의 심볼오율 비교)

  • Hwang, Ho-Seon;Park, Gyu-Tae;Joo, Jae-Hoon;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.139-146
    • /
    • 2018
  • Underwater acoustic communication can be applied to various area such as scientific, commercial and military survey using Autonomous Underwater Vehicles and Unmanned Underwater Vehicles. Underwater communication is studying very actively by advanced country like United States. But differ from wireless communication in the air, underwater acoustic communication has some difficult problems, ISI(Inter Symbol Interference) due to multipath and limit of transmission bandwidth due to slow propagation of sound wave. In this paper, SC-FDE and OFDM transmission system for the cancellation of ISI in conjunction with underwater acoustic channel modeling are applied to the underwater simulation of communication. The performance of these methods in the simulation guide to possibility of adopting in underwater acoustic communication algorithm. For this purpose, we compare SER performance of SC-FDE with that of OFDM for modelled underwater channel. Underwater channel is generated by Bellhop model. Simulation results show above 5dB SNR gain at 10-3 SER. And it demonstrate SC-FDE is efficient method for underwater acoustic communication.

Influence of Underwater Channel Time-Variability on Communication Throughput Efficiency (수중 채널의 시변동성이 통신 스루풋 효율에 미치는 영향)

  • Hwang, Chan-Ho;Kim, Ki-Man;Lee, Dong-Won;Park, Tae-Doo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.413-419
    • /
    • 2014
  • Underwater acoustic channel has time-variability. Time varying channel which disturbs the continuous transmission of information data reduces the underwater acoustic communication performance. In this paper, we show the temporal coherence as time-variability of channel and indicate throughput efficiency in accordance with transmission time of information data. Then we analyzed influence of underwater channel time-variability on communication throughput efficiency. We confirmed that the throughput efficiency reduced when the time-variability of the channel increased via lake trial.

Underwater acoustic communication system using diversity based on ray modeled underwater acoustic channel in Yellow Sea (다이버시티 기법을 이용한 서해에서의 음선 모델기반 수중음향통신 시스템)

  • Kang, Jiwoong;Kim, Hyeonsu;Ahn, Jongmin;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • This paper proposes an adequate UWA (Underwater Acoustic) communication system of underwater communication network in the Yellow Sea. UWA channel is obtained from Bellhop ray tracing method with Yellow Sea environments. Based on this channel, communication parameters for CDMA (Code Division Multiple Access) and SC-FDM (Single Carrier-Frequency Division Multiplexing) using diversity techniques are calculated. In order to prove the proposed methods, BER (Bit Error Rate) and data rate are obtained using computer simulations and the adequate communication system for long rms delay spread and low Eb/No environments is proposed from the simulation.

A Study on Constitution of Underwater Acoustic Communication Channel using TLM Modeling (TLM 모델링을 이용한 수중 음향 통신 채널 구현에 관한 연구)

  • Park, Kyu-Chil;Park, Jin-Nam
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.421-422
    • /
    • 2007
  • In underwater, acoustic waves are used for telecommunication. The communication channels are very complicated, because of the distribution of temperature in depth, reflections from boundaries like as the surface of water and the bottom. We report the constitution of the underwater acoustic channel using the simulation of the Transmission Line Matrix Modeling and cross-correlations from the input and output signals.

  • PDF

Simulation of Time Delay Communication algorithm In the Shallow Underwater Channel

  • Yoon, Byung-Woo;Eren Yildirim, Mustafa
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • The need of data transmission in oceans and other underwater mediums are increasing day by day, so as the research. The underwater medium is very different from that of air. Propagation of electromagnetic wave in water or underground is very difficult because of the conductivity of the propagation materials. In this case, we usually use acoustic signals as ultrasonic but, they are not easy to transfer long distance with coherent method because of time varying multipaths, Doppler effects and attenuations. So, we use non-coherent methods such as FSK or ASK to communicate between long distances. But, as the propagation speed of acoustic wave is very slow, BW of the channel is narrow. It is very hard to guaranty the enough speed for the transmission of digital image data. In previous studies, we proposed this data communication protocol theoretically. In this paper, an underwater channel is modeled and this protocol is tested in this channel condition. The results show that the protocol is 4-6 times faster than ASK. Some relations and results are shown depending on the data length, channel length, bit rate etc.

Bit Error Parameters on Passive Phase Conjugation Underwater Acoustic Communication (수동 페이저 컨쥬게이션 수중음향통신 기법의 비트오류 영향 인자)

  • Yoon, Jong-Rak;Park, Moon-Kab;Ro, Yong-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.454-461
    • /
    • 2005
  • Time spread due to the multipath in underwater acoustic channel, induces ISI (Inter-Symbol Interference) which degrades the performance of the underwater acoustic communication system. The passive phase conjugation (PPC) which improves the signal to multipath interference ratio (SMR) and therefore reduces the frequency selectivity. is a diversity communication technique giving a less ISI under multipath fading channel. Its frequency selectivity depends on the number of receiver array sensors and time varying source to receiver range. In this study, frequency selectivity of the PPC and its effects on bit error of underwater acoustic communication is analyzed by numerical simulation.