• Title/Summary/Keyword: Underwater Wireless Sensor Networks

Search Result 40, Processing Time 0.03 seconds

A Recovery Scheme of a Cluster Head Failure for Underwater Wireless Sensor Networks (수중 무선 센서 네트워크를 위한 클러스터 헤드 오류 복구 기법)

  • Heo, Jun-Young;Min, Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.17-22
    • /
    • 2011
  • The underwater environments are quite different from the terrestrial ones in terms of the communication channel and constrains. In underwater wireless sensor network, the probability of node failure is high because sensor nodes are deployed in more harsh environments than the ground based networks and moved by waves and currents. There are researches considering the communication environments of underwater to improve the data transmission throughput. In this paper, we present a checkpointing scheme of the cluster heads that recoveries from a cluster head failure quickly. Experimental results show that the proposed scheme enhances the reliability of the networks and more efficient in terms of the energy consumption and the recovery latency than without checkpointing.

Design and Implementation of an Ultrasonic Communication Modem for Underwater Sensor Networks (수중 센서네트워크를 위한 초음파 통신 모뎀 설계 및 구현)

  • Byeon, Moo-Kwang;Park, Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.437-444
    • /
    • 2009
  • Underwater sensor networks (USN) for ocean development and disaster prevention have been emerged as one of interesting research topics recently. Since a high-speed and inexpensive communication modem is a prerequisite for deployment of USN, we design and implement an underwater modem by utilizing general-purpose waterproof ultrasonic sensors in this paper. We also make experiments in indoor and outdoor environment with two modems facing each other to conduct a point-to-point communication. According to the experiments, we can achieve the data rates of 1.5 kbps in a water tank and 2 kbps in a pond. Also, the maximum communication distance between two modems is about 30 meters. Besides, we conduct a point-to-multipoint experiment imitating USN by deploying a gateway, a sink node and three sensor nodes in a water tank.

Efficient Data Transmission Scheme for Underwater Wireless Sensor Networks (수중 센서 네트워크를 위한 효율적인 데이터 전송 기법)

  • Park, Hyun-Hoon;Park, Jin-Ho;Lee, Jong-Geun;Kim, Sung-Un
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.43-44
    • /
    • 2007
  • The Underwater Wireless Sensor Network (UWSN) consists of sensor nodes equipped with a small battery of limited energy resource. Hence, the energy efficiency is a key design issue that needs to be addressed in order to improve the lifetime of the network. In this paper, we use a hexagon tessellation with and ideal cell size to deploy the underwater sensor nodes for the UWSN and propose an enhanced hybrid transmission method that considers the load balancing once the data transmission occurs.

  • PDF

Q-NAV: NAV Setting Method based on Reinforcement Learning in Underwater Wireless Networks (Q-NAV: 수중 무선 네트워크에서 강화학습 기반의 NAV 설정 방법)

  • Park, Seok-Hyeon;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.1-7
    • /
    • 2020
  • The demand on the underwater communications is extremely increasing in searching for underwater resources, marine expedition, or environmental researches, yet there are many problems with the wireless communications because of the characteristics of the underwater environments. Especially, with the underwater wireless networks, there happen inevitable delay time and spacial inequality due to the distances between the nodes. To solve these problems, this paper suggests a new solution based on ALOHA-Q. The suggested method use random NAV value. and Environments take reward through communications success or fail. After then, The environments setting NAV value from reward. This model minimizes usage of energy and computing resources under the underwater wireless networks, and learns and setting NAV values through intense learning. The results of the simulations show that NAV values can be environmentally adopted and select best value to the circumstances, so the problems which are unnecessary delay times and spacial inequality can be solved. Result of simulations, NAV time decreasing 17.5% compared with original NAV.

Environment Monitoring System Using RF Sensor (RF 센서를 이용한 해양 환경 관리 시스템)

  • Cha, Jin-Man;Park, Yeoun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.896-898
    • /
    • 2012
  • Recently, many countries are making efforts for the development of ocean resources because the necessity and importance of the ocean resources are increased. Underwater sensor networks have emerged as a very powerful technique for many applications, including monitoring, measurement, surveillance and control and envisioned to enable applications for oceanographic data collection, ocean sampling, environmental and pollution monitoring, offshore exploration, disaster prevention, tsunami and seaquake warning, assisted navigation, distributed tactical surveillance, and mine reconnaissance. The idea of applying sensor networks into underwater environments (i.e., forming underwater sensor networks) has received increasing interests in monitoring aquatic environments for scientific, environmental, commercial, safety, and military reasons. The data obtained by observing around the environment are wireless-transmitted by a radio set with various waves. According to the technical development of the medium set, some parameters restricted in observing the ocean have been gradually developed with the solution of power, distance, and corrosion and watertight by the seawater. The actual matters such as variety of required data, real-time observation, and data transmission, however, have not enough been improved just as various telecommunication systems on the land. In this paper, a wireless management system will be studied through a setup of wireless network available at fishery around the coast, real-time environmental observation with RF sensor, and data collection by a sensing device at the coastal areas.

  • PDF

Differentiated Packet Transmission Methods for Underwater Sensor Communication Using SON Technique (SON (Self Organizing Network) 기술을 이용한 해양 수중 센서 간 통신에 있어서 데이터 중요도에 따른 패킷 차별화 전송 기법)

  • Park, Kyung-Min;Kim, Young-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.399-404
    • /
    • 2011
  • For the underwater wireless sensor networks, we propose the packet transmission method which distinguishes more important packet than others. Because the ocean underwater transmission environments are extremely unstable, we use SON(Self Organizing Network) techniques to adapt to the constantly varying underwater acoustic communication channels and randomly deployed sensor nodes. Especially we suppose two kinds of packets which have different priorities, and through the simulations we show that high priority packets arrive at the source node faster than lower priority packets with a proposed scheme.

A Study on Dynamic Timeout Over Multiple Access with Collision Avoidance (충돌회피 다중접속을 위한 동적 타임아웃 연구)

  • Khoa, Tran Thi Minh;Oh, Seung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.97-100
    • /
    • 2011
  • Underwater Wireless Acoustic Sensor Networks have become an important area of research over the recent decades. Designing an underwater network, especially a media access control (MAC) protocol, faces many challenges due to the peculiarities of underwater environment. One of the most important problems is resulted from long and variable propagation delay of the acoustic wave. In this paper, we propose a new method, namely Dynamic Timeout over Multiple Access with Collision Avoidance (DT/MACA), which is designed to handle long and high variable propagation delay in underwater acoustic sensor networks. In this proposed method, the difference timeout intervals are evaluated and applied to each network transmission. Simulation results show that our work not only improves the network throughput, but also decreases the unnecessary retransmission and end-to-end delay.

Media Access Control Mechanism for Efficient Wireless Communication in Underwater Environments (수중 환경에서 효율적인 무선 통신을 위한 매체접근제어 메커니즘)

  • Jeong, Yoo-Jin;Shin, Soo-Young;Park, Soo-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.79-86
    • /
    • 2006
  • Data transmission in poor environment like underwater has considerably serious delay rate and ewer rate. Like this environment usually has heavy fluctuation of error rate and limited wireless communication state. Therefore, mechanism using in such environment has to be efficient and simple. This paper suggests a new block ack mechanism, called the Pervasive Block ACK (PBA), which transmits aggregated ACKs. This mechanism takes effect on reducing number of traffic, decreasing overhead and delay rate in poor environment networks like underwater. Additionally, we can expect energy consumption. We verify propriety and efficiency of PBA through describing numerical result based analytical formula in this paper.

  • PDF

Underwater Localization using RF Sensor and INS for Unmanned Underwater Vehicles (RF 센서와 INS을 이용한 UUV 위치 추정)

  • Park, Daegil;Kwak, Kyungmin;Jung, Jaehoon;Kim, Jinhyun;Chung, Wan Kyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.170-176
    • /
    • 2017
  • In this paper, we propose an underwater localization scheme through the fusion of an inertial navigation system (INS) and the received signal strength (RSS) of electromagnetic (EM) wave sensors to guarantee precise localization performance with high sampling rates. In this localization scheme, the INS predicts the pose of the unmanned underwater vehicle (UUV) by dead reckoning at every step, and the RF sensors corrects the UUV position functions using the Earth-fixed reference when the UUV is located in underwater wireless sensor networks (UWSN). The localization scheme and state modeling were conducted in the extended Kalman filter framework, and UUV localization experiments were conducted in a basin environment. The scheme achieved reliable localization accuracy during long-term navigation, demonstrating the feasibility of exploiting EM wave attenuation as Earth-fixed reference sensors.

A Hexagon Tessellation Approach for the Transmission Energy Efficiency in Underwater Wireless Sensor Networks

  • Kim, Sung-Un;Cheon, Hyun-Soo;Seo, Sang-Bo;Song, Seung-Mi;Park, Seon-Yeong
    • Journal of Information Processing Systems
    • /
    • v.6 no.1
    • /
    • pp.53-66
    • /
    • 2010
  • The energy efficiency is a key design issue to improve the lifetime of the underwater sensor networks (UWSN) consisting of sensor nodes equipped with a small battery of limited energy resource. In this paper, we apply a hexagon tessellation with an ideal cell size to deploy the underwater sensor nodes for two-dimensional UWSN. Upon this setting, we propose an enhanced hybrid transmission method that forwards data packets in a mixed transmission way based on location dependent direct transmitting or uniform multi-hop forwarding. In order to select direct transmitting or uniform multi-hop forwarding, the proposed method applies the threshold annulus that is defined as the distance between the cluster head node and the base station (BS). Our simulation results show that the proposed method enhances the energy efficiency compared with the existing multi-hop forwarding methods and hybrid transmission methods