• Title/Summary/Keyword: Underwater Vessels

Search Result 77, Processing Time 0.025 seconds

A Study on the Modelling Method of Underwater Electric Field Signature due to Ship's Corrosion (선체 부식에 의한 수중 전기장 신호 특성 모델링 기법 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.876-878
    • /
    • 2008
  • The galvanic corrosion of a vessel, or systems fitted to minimize the ship's corrosion such as ICCP(Impressed Current Cathodic Protection) system and sacrificial anodes, can lead to significant electrical current flow in the sea. The presence of vessel's current sources associated with corrosion will give rise to detectable electric field surrounding the vessel and can put it at risk from mine threats. For this reason, it is necessary to design corrosion protection systems so that they don't only prevent a hull corrosion but also minimize the electric field signature. In this paper, we describe theoretical backgrounds of underwater electric field signature due to corrosion and corrosion protection system on naval vessels and analysis results of the electric field according to ICCP anode arrangement.

  • PDF

A study on the estimation of underwater shipping noise using automatic identification system data (선박자동식별장치 데이터를 이용한 수중 선박소음 추정 연구)

  • Park, Ji Sung;Kang, Donhyug;Kim, Hansoo;Kim, Mira;Cho, Sungho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.3
    • /
    • pp.129-138
    • /
    • 2018
  • In port and coastal areas where ship traffic is frequent, ship noise dominantly influences underwater noise in low frequency band below 1 kHz. In this paper, we propose a modeling method to estimate the underwater shipping noise using the voyage information of ship observed in AIS (Automatic Identification System). For the purpose of ship noise modeling, the navigation information of the vessels operating in the southern part of Jeju was observed using AIS and underwater noise was measured by installing a hydrophone in the experimental area to verify the modeled ship noise. AIS data were used to model the noise level of ship and compared with measured underwater noise. The variation of noise level with time was found to be similar, and the cause of the error was discussed. Through this study, it was confirmed that the noise level of ship can be estimated within 5 dB error range using AIS data.

Effect of Airborne Noise from Ship Machinery on Underwater Noise (선박의 장비 공기소음이 수중소음에 미치는 영향)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.569-574
    • /
    • 2011
  • In research vessels or naval ships, airborne noise from machineries such as diesel engine is the major source of underwater noise at low speed. In this paper, effect of engine noise on underwater noise is studied by considering two paths; sound radiation from hull plate and direct airborne noise transmission through hull plate. SEA (Statistical energy analysis) is used to predict hull plate vibration induced by engine noise, where SEA model consists of only two subsystems; engine room air space and hull plate. The pressure level in water is calculated from sound radiation by plate. Engine noise transmission through hull plate is obtained by assuming plane wave propagation in air-limp plate-water system. Two effects are combined and compared to the measurement, where speaker is used as a source in engine room and sound pressure levels in engine room and water are measured. The hydrophone is located 1 m away from the hull plate. It is found below 1000 Hz, prediction overestimates underwater sound pressure level by 5 to 12 dB.

Review of Shock Test Standards for Unifying Specification of Naval Equipments (함정탑재장비 규격통일화를 위한 충격시험기준 고찰)

  • Kim, Young-Ju;Kim, Joon-Won
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.214-215
    • /
    • 2005
  • Naval equipments are installed and used for naval vessel with different environmental conditions comparing to the commercial vessel, for example, high engine power per ship displacement size, severe vibration and shock due to high running speed and explosion from naval gun's bombardment and underwater weapons. Therefore, those equipments must be installed on shipboard with small spaces, high ambient temperature around engine room and which are required be fabricated with high resistances of vibration, shock and heat resources. But in case of commercial vessel, the performances of their recent equipments naval have been improved continuously due to the technology development of domestic shipbuilding and shipboard equipment industries, together with the related fundamental industries i.e, metal, steel and electronic industries, to an international level since 1970. With these results, it became possible to unify the specifications of shipboard equipments for the commercial and military vessels(Dual-Use). In this study, vibration and shock test standards for the commercial and military vessels will be compared and reviewed technically.

  • PDF

Overall studies on the IMO manoeuvrability standard and problems arising in application of the criteria of it to various kinds of vessels

  • Lee Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.595-601
    • /
    • 2005
  • The IMO manoeuvrability standard was established for preventing sea accidents such as collisions and strandings due to the lack of manoeuvrability. The standard of ship manoeuvrability enforced by resolution MSC.l37(76) has been applied to vessels of 100m or more in length and all chemical tankers and gas carriers regardless of the length, which were constructed on or after 1 July 1994. The IMO manoeuvrability standard is able to be divided into three kinds as followings; (1) Turning capability standard: Estimated values in design stage are to be certified by turning circle test of the actual vessel. (2) Course keeping quality standard : Estimated values in design stage are to be certified by 10 deg. and 20 deg. zig-zag tests of the actual vessel. (3) Shortest stopping distance standard : Estimated value in design stage is to be certified by the shortest stopping distance tested by the actual vessel. In this paper, the authors verified the criteria of IMO manoeuvrability standard comparing them with the values resulted from sea trial tests of various kinds of actual vessels and examined separately the validity of all criteria of the standard.

Overall studies on the IMO manoeuvrability standard and problems arising in application of the criteria of it to various kinds of vessels

  • Lee Chun-Ki;Yoon Jeom-Dong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.27-33
    • /
    • 2005
  • The IMO manoeuvrability standard was established for preventing sea accidents such as collisions and strandings due to the lack of manoeuvrability. The standard of ship manoeuvrability enforced by resolution MSC.137(76) has been applied to vessels of 100m or more in length and all chemical tankers and gas carriers regardless of the length, which were constructed on or after 1 July 1994. The IMO manoeuvrability standard is able to be divided into three kinds as followings; (1) Turning capability standard: Estimated values in design stage are to be certified by turning cir치e test q the actual vessel (2) Course keeping quality standard: Estimated values in design stage are to be certified by 10 deg. and 20 deg. zig-zag tests of the actual vessel. (3) Shortest stopping distance standard: Estimated value in design stage is to be certified by the shortest stopping distance tested by the actual vessel. In this paper, the authors verified the criteria of IMO manoeuvrability standard comparing them with the values resulted from sea trial tests of various kinds q actual vessels and examined separately the validity of all criteria of the standard.

  • PDF

Model tests on the moored vessel with different moonpool shapes

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.137-147
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like cable-laying vessels and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modeled and tested in the wave basin. The moored lines are provided with pre-tension and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs determined for various situations provide better insight to the designer. The experiments done in the wave basin may also be compared with a software package meant for handling moored floating bodies.

A Study on the Evaluation and Validity of IMO Manoeuvrability Standards of Vessels (IMO 선박 조종성 기준의 계산 및 타당성에 관한 연구)

  • Lee, Chun-Ki;Yoon, Jeom-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.71-76
    • /
    • 2005
  • Many sea accidents such as collisions and groundings of vessels were occurred due to the lack of sufficient manoeuvring capability of vessels. Therefore IMO adopted 'The interim standards of ship manoeuvrability by Resolution A.751(18) and the standards have been applied to vessels of 100m or more in length and all chemical tankers and gas carriers regardless of the length, which were constructed on or after 1 July 1994. The IMO manoeuvrability standards are divided into three kinds as bellows; (1) Turning capability standards : Estimated values in design stage are to be certified by turning circle test of the actual vessel. (2) Course keeping quality standards : Estimated values in design stage are to be certified by $10^\sqsubset\;and\;20^\sqsubset$ Zig-Zag tests of the actual vessel. (3) Shortest stopping distance standards : Estimated values in design stage are to be certified by the shortest stopping distance tested by the actual vessel. In this paper, the authors computed the values of the manoeuvring standards of several vessels from their original design and compared them with those results from experiments of the model ships and also examined the values and concluded about the validity of IMO Manoeuvrability standards.

  • PDF

A Study on the Evaluation and Validation of IMO Manoeuvrability Standards of Vessels (IMO 선박 조종성 기준의 계산 및 고찰에 관한 연구)

  • Lee Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.365-370
    • /
    • 2005
  • Many sea accidents such as collisions and groundings of vessels were occurred due to the lack of sufficient manoeuvring capability of vessels. Therefore IMO adopted 'The interim standards of ship manoeuvrability by Resolution A.751(18)' and the standards have been applied to vessels of 100m or more in length and all chemical tankers and gas carriers regardless qf the length, which were constructed on or after 1 July 1994. The IMO manoeuvrability standards are divided into three kinds as bellows; (1) Turning capability standards : Estimated values in design stage are to be certified by turning circle test of the actual vessel. (2) Course keeping quality standards : Estimated values in design stage are to be certified by $10^{\circ}\;and\;20^{\circ}$ Zig-Zag tests of the actual vessel. (3) Shortest stopping distance standards : Estimated values in design stage are to be certified by the shortest stopping distance tested by the actual vessel. In this paper, the authors computed the values of the manoeuvring standards of several vessels from their original design and compared them with those results from experiments of the model ships and also examined the values and concluded about the validity of IMO manoeuvrability standards.

Hydrodynamic Interaction Effects Between Vessels in Confined Waters (제한수역에서 항행선박이 계류중인 선박에 미치는 간섭영향에 관한 연구)

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.799-804
    • /
    • 2011
  • The hydrodynamic interaction effects between the multi-bodies can not be neglected when vessels are close to each other in congested and confined waters, such as in a harbour or narrow channel. Increase in speed and size of modern vessels make it necessary to consider this interaction effects when designing harbours and navigation channels. In this research, the hydrodynamic interaction effects of the spacing between vessels and water depth along with ship's velocity are summarized and discussed. The goal of this research is to propose a guideline of appropriate speed and distance between passing and moored vessels to avoid the influence of hydrodynamic forces and to navigate safely in confined sea areas.