• Title/Summary/Keyword: Underwater Sound

Search Result 236, Processing Time 0.025 seconds

Effects an Acoustical Equipment on the Luring of Fish School (음향집어기의 집어 효과)

  • 장선덕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.4
    • /
    • pp.75-82
    • /
    • 1986
  • A field experiment was carried out to clarify the effect of underwater sound on the luring of fish school. The effects of. the acoustic emission on the luring of fish school were checked actually at a set net fishing site in Namhae using a commercial acoustic equipment, Dairyo-8. An emitting system of sound was designed by the authors, and the ambient noise, the sound pressure level and the reaction of fish school were measured in the set net. 1. The predominent frequency band of ambient noise was 150Hz-400Hz,.and the sound emitted was 400Hz-100Hz. The sound pressure level of ambient noise in set net was higher at the landing part, and lower at the playgrond, the gate of court and "the enterance of inclined "passage. The ambient noise was increased with the time elapse-d at the stage of hauling net, but :it was decreased suddenly at the final stage due probably to the decrease of the swimming speed of the fish school. 2. The results of the observation and the recording paper of echo sounder indicate that the effect of emitting sound in the bag net of set net was remarkable for the luring of fish school in the early stage, but decreased after 30 minutes. The reaction of fish school is more sensitiv2 to the sound pressure level than the time intervals between the emission and the pause. For the purpos~ of practical use, it is nesessary to confirm what kind of sound pressure level is the best for the luring of fish school. 3. In response to the acoustic equipment(Dairyo-8), fish school started to swarm 20 minutes after the sound emission and scattered when the sound paused. As the emitting pattern of the acoustic equiment, the three seconds of emission after one second of pause was more effective than the continuous emission at the set net fishing ground. Catch of the fish(s during th~ sound ernissio:l at the gate of court was three to five times more than that of no emission.

  • PDF

Investigation on relative contribution of flow noise sources of ship propulsion system (선박 추진시스템 유동 소음원 상대적 기여도 분석)

  • Ha, Junbeom;Ku, Garam;Cheong, Cheolung;Seol, Hanshin;Jeong, Hongseok;Jung, Minseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.268-277
    • /
    • 2022
  • In this study, each component of flow noise source of underwater propeller installed to the scale model of the KVLCC2 is investigated and the effect of each noise source on underwater-radiated noise is quantitatively analyzed. The computation domain is set to be the same as the test section of the large cavitation tunnel in the Korea Research Institute of Ship and Ocean Engineering. First, for the high-resolution computation of flow field which is noise source region, the incompressible multiphase Delayed Detached Eddy Simulation is performed. Based on flow simulation results, the Ffowcs Williams and Hawkings integral equation is used to predict underwater-radiated noise and its validity is confirmed through the comparison with the tunnel experiment result. For the quantitative comparison on the contribution of each noise source, the spectral levels of sound pressure and power levels predicted using propeller tip-vortex cavitation, blade surface and rudder surface as the integral region of noise sources are investigated. It is confirmed that the cavitation which is monopole noise source significantly contributed to the underwater-radiated noise than propeller blades and rudder which is dipole noise source, and the rudder have more contribution than propeller blades due to the influence of the propeller wake.

An Angular Independent Backscattered Amplitude Imagery of Multi-Beam Echo Sounder for Sediment Boundary Extraction

  • Park, Jo-Seph;Kim, Hi-Kil;Park, Seong-ho
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.663-663
    • /
    • 2002
  • The National Oceanographic Research Institute of KOREA started to survey for the basic data necessary to territorial sea and EEZ identification and marine development with Multi-Beam Echo Sounder(L3 SeaBeam 2112) since 1996. The Multi-Beam surveys has provided a very new and precise way of describing the morphology and nature of the underwater seabed. Multi-Beam Echo Sounder systems employ sound waves propagating at angles which vary from vertical to nearly horizontal. The locations on the bottom where echoes are generated cover a swath whose port to starboard width may be equal to many times the water depth. Newer Multi-beam bathymetric sonars provide both a beam by beam depth and backscatter amplitude of the bottom. But The backscattered amplitude didn't use for identification of bottom properties because backscatter amplitude effects by the many environmental variables of underwater and seabed. We investigates the utilization of geo-referenced backscatter amplitude and analysis of relationship between The Backscattered Amplitude and Sidescan Sonar imagery from Sea Beam 2112. For the backscattered amplitude imagery mainly represents the properties of sediment, we computed the beam geometry, time-varied amplifier gain, and mainly incidence angle to the topography using bathymetric model at each ping. In this paper, those issues are illustrated, and the angular independent imagery based on swath topographic model is described.

  • PDF

Nonlinear Sound Amplification and Directivity Due to Underwater Bubbles (수중 기포에 의한 비선형 음파의 증폭과 지향성)

  • 김병남;최복경;윤석왕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.250-260
    • /
    • 2003
  • Since a bubble in water is a highly nonlinear acoustic scatterer, the acoustic scattered waves from underwater bubbles show highly nonlinear acoustic properties. These acoustic scattered waves can be observed at the second or higher harmonics as well as at the fundamental primary frequency of incident acoustic wave. When two primary acoustic waves of different frequencies are incident on a bubble, the acoustic scattered waves can be also observed at the sum and the difference frequencies of the primary waves. In this study, when the two primary acoustic waves were incident on a bubble screen in water, we observed that the amplitude of difference frequency wave was amplified by the bubble nonlinearity and its directivity was oriented in the propagation directions of primary waves. The directivity of scattered difference frequency wave was analyzed as a coherent scattering for virtual source by using the directivity of the primary acoustic wave.

Ship Identification Using Acoustic Characteristic Extraction and Pattern Recognition (음파 특징 추출 및 패턴 인식을 통한 선박 식별)

  • Jang, Hong-Ju;Lee, Sang-Hoon
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.93-103
    • /
    • 2007
  • Ship identification systems currently employed provide the underwater sound analysis, analyzed data saving and user interface with comparison function. But final analysis and identification depend only on experts. Therefore, the reliability of these identification systems relies on user's ability on information recognition. This paper presents the method of recognition for the purpose of providing the basic data for an automatic ship class identification. we get the underwater sounds using the PC. We use Matlab in order to reduce ambient noises, take out an acoustic characteristics using the pattern recognition, and classify the ships.

Numerical Simulation of MIL-S-901D Heavy Weight Shock Test of a Double Resiliently Mounted Main Engine Module (이중 탄성지지 주기관 모듈의 MIL-S-901D 중중량 충격시험 수치 시뮬레이션)

  • Kwon, Jeong-Il;Lee, Sang-Gab;Chung, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.499-505
    • /
    • 2005
  • Underwater explosion shock response analysis of a nonlinear double resiliently mounted equipment on a MIL-S-901D Large floating Shock Platform(LFSP) was carried out using LS-DYNA3D/USA. As a nonlinear double resiliently mounted equipment, real main engine module of naval ship was considered, where the engine, bearing, and base frame including sound enclosure were treated as rigid bodies with six degrees of freedom. The nonlinear effects of resilient mounts on its shock response characteristics were examined, and the usefulness of our suggested method was also confirmed comparing with calculation results by the equipment maker.

MAC Protocol for Single-Hop Underwater Sensor Network (싱글 홉 수중 센서 네트워크를 위한 매체접속제어 프로토콜 설계)

  • Baek, Seung-Kwon;Cho, Ho-Shin;Jang, Youn-Seon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.499-505
    • /
    • 2009
  • Main design issues for MAC (Medium Access Control) protocol in underwater sensor networks are long propagation delay caused by the low speed of sound, difficult synchronization, and energy-limited node's life. We aimed to mitigate the problems of strict synchronization and channel inefficiency of TDMA and also the throughput degradation induced by unavoidable collisions in contention based MAC protocols. This proposed protocol improved not only the energy efficiency by adopting a sleep-mode, but also the throughput by reducing collisions and increasing channel efficiency.

Propagation Loss Measurement of Underwater Sound Wave using Narrow Band Acoustic Signal (협대역 음향신호를 이용한 수중음파의 전파손실 측정)

  • Na, Young-Nam;Shim, Tae-Bo;Choi, Jin-Hyeok;Chang, Duck-Hong;Kim, Seong-Il;Han, Jeong-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.5-15
    • /
    • 1994
  • In order to examine the propagation loss associated with water depth and bottom sediment type, an acoustic experiment was conducted in the Southeast Sea of Korea. A sound source was towed along the pre-defined tracks in about 5kts and the signal was simultaneously received at three bottom-moored hydrophones. The propagation loss of sound wave traveling along the isodepth was compared with that crossing the isodepth. The former case shows, in general, less loss than the latter. This trend is stronger as the distance between a source and a receiver increases. When sound wave propagates across the isodepth, we also find that the propagation loss is influenced by the upsloping and downslopoing conditions of wave propagtion. In general, the propagation loss under downsloping condition is smaller than that of upsloping condition, and the differences are as large as 10dB in some cases. However, little difference are found in the propagation loss depending on the bottom types : gravelly sand and sand-silt-clay. Meanwhile, the optimum propagation frequencies are found within range of 130-255Hz.

  • PDF

A Study on the Torpedo Sonar Simulation for Combat System by Modeling Target and Noise (전투체계를 위한 표적 및 주변소음 모델링을 통한 어뢰소나 표적탐지 시뮬레이션 연구)

  • Kim, Yong;You, Hyun Seung;Kim, Seung Hwan;Ji, Jae Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.554-564
    • /
    • 2020
  • In environment of torpedo firing, underwater acoustic signal is generated by target and noise. Sound wave which is generated from acoustic signal is propagated by seawater and it is received through the sonar(sound navigation and ranging) system mounted on torpedo. In the ocean, acoustic signal or sound wave from target that is generated by the spread of broadband can be attenuated by ambient noise and can be lost by medium and environment. This research is designed to support teamwork training in Naval operations by constructing a simulation system that is more similar to the real-world conditions. This paper attempts to research the modeling of target detection and to develop the simulation of torpedo sonar(TOSO). In order to develop the realistic simulation, we researched the broadband sound modeling of target and noise source, the modeling of acoustic transmission loss by chemical component of seawater, and the modeling of signal attenuation by ambient noise environment which is approximated by experimental measurements in seawater surrounding the Korea Peninsular and by experience of Navy's actual torpedo firing. This research contributed to constructing more practical simulation of torpedo firing in real time and the results of this research were used to develop a teamwork training system for the Navy and their education.

Suggestion of Safety Level in Fish Farming by Impulsive Sound (충격소음으로 인한 양식어류 피해기준 제안)

  • Choi, Tae Hong;Kim, Jung Han;Song, Ha Lim;Ko, Chin Surk
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.125-132
    • /
    • 2015
  • As for noise and vibration occurring due to construction near fish farms, engineering and the technical opinions of experts in different areas were excluded in calculating any damage. The victims tend to present only biological consulting-based opinions while construction companies tend to present information on general construction noise and vibration as they have little biological knowledge on fish. So, the National Environmental Dispute Medication Commission presented specific damage standard in 2009 through studies on standard in calculating compensation and damage assessment of farm-raised fish that were affected by noise and vibration. Currently, 140 dB re $1{\mu}Pa$ is accepted as damage standard of underwater noise in the country. This standard is the RMS value of continuous sounds for more than a second, not the impulsive sounds. To look up the data on existing studies, fish showed different reactions to underwater sounds according to the different kinds of fish such as ostariophysan or non-ostariophysan, and pinnipeds or non-pinnipeds. So, this study will present damage standards for impulsive sounds in consideration of the differences in the characteristics of the impulsive and continuous sounds.