• Title/Summary/Keyword: Underwater Sound

Search Result 236, Processing Time 0.027 seconds

A Study On The Development Of Virtual Underwater Environment And Sensory Simulator (가상 수중 환경과 체감형 시뮬레이터 개발에 관한 연구)

  • Youn, Jae-Hong;Hur, Gi-Taek;Kang, Im-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.560-568
    • /
    • 2012
  • As for the implementation technology of virtual space, the experience method becomes multifunctional and it recognizes movement, sound, temperature and pressure and is expanding to the studies on the interaction possible intelligent interaction technology field between contents and users. The virtual reality technology is being studied to apply the 3D graphic technology and physical phenomena to virtual space to increase the sense of reality and use hardware devices to the virtual environment to increase immersive experience. The production of interactive contents about the virtual underwater environment needs bidirectional interface technology to connect hardware devices and ocean contents in order to increase the sense of a user to increase the sense of immersion. In this study, it tried to express the virtual underwater environment with the sense of actuality and reality from the analysis of the environmental factors according to changes in depth of water and from the application of the normalized underwater physical laws. Also it was to develop sensory contents having to experience the skin scuba without directly entering the water by connecting a sensory simulator about the skin scuba with the virtual underwater environment.

Turbo Equalization for Covert communication in Underwater Channel (터보등화를 이용한 직접대역확산통신 기반의 은밀 수중통신 성능분석)

  • Ahn, Tae-Seok;Jung, Ji-Won;Park, Tae-Doo;Lee, Dong-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1422-1430
    • /
    • 2016
  • Researches for oceans are limited to military purpose such as underwater sound detection and tracking system. Underwater acoustic communications with low-probability-of-interception (LPI) covert characteristics were received much attention recently. Covert communications are conducted at a low received signal-to-noise ratio to prevent interception or detection by an eavesdropper. This paper proposed optimal covert communication model based on direct sequence spread spectrum for underwater environments. Spread spectrum signals may be used for data transmission on underwater acoustic channels to achieve reliable transmission by suppressing the detrimental effect of interference and self-interference due to jamming and multipath propagation. The characteristics of the underwater acoustic channel present special problems in the design of covert communication systems. To improve performance and probability of interception, we applied BCJR(Bahl, Cocke, Jelinek, Raviv) decoding method and the direct sequence spread spectrum technology in low SNR. Also, we compared the performance between conventional model and proposed model based on turbo equalization by simulation and lake experiment.

Performance of Underwater Communication in Low Salinity Layer at the Western Sea of Jeju (제주도 서부 해역의 저염수층을 고려한 수중통신 성능)

  • Bok, Tae-Hoon;Kim, Ju-Ho;Lee, Chong-Hyun;Bae, Jin-Ho;Paeng, Dong-Guk;Pang, Ig-Chan;Lee, Jong-Kil
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • The sound speed of seawater can be calculated by the empirical formula as a function of temperature, salinity and pressure. It is little affected by salinity because the average salinity is 34 psu and varies within a few psu seasonally and spatially in the ocean. Recently, low-salinity water of 24 psu flows into the western sea area of Jeju Island due to the flood of the Yangtze River in China during summer, affecting sound speed profile. In this paper, it was analyzed how environmental changes affected to the underwater communication - the sound speed of low-salinity water was calculated, and the communication channel was estimated by the simulated acoustic rays while the transmitting and receiving depth and the range were varied with and without the low-salinity layer. And The BER (Bit error rate) was calculated by BPSK(Binary phase shift key) modulation and the effects of the low-salinity water on the BER was investigated. The sound speed profile was changed to have positive slope by the low-salinity layer at the sub-surface up to 20 m of depth, forming acoustic wave propagation channel at the sub-surface resulting in the decrease of most of the BER Consequently, this paper suggests that it is important to consider changes of the ocean environment for correctly analyzing the underwater communication and the detection capability.

Acoustic Properties of Rubber Compound for Anechoic Coating

  • Bae, Jong Woo;Kim, Won Ho;Ahn, Byung Hyun
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.195-201
    • /
    • 2018
  • Three kinds of rubber compounds were prepared, and their underwater acoustical properties were investigated for anechoic coating. Dynamic mechanical properties of the rubber compounds were measured using a dynamic mechanical analyzer and extended to 100 kHz using time-temperature superposition. The sound speed, reflection coefficient, and attenuation constant were calculated. Silicone rubber showed the lowest reflection coefficient, and nitrile rubber showed the highest attenuation constant. The acoustic properties of nitrile rubber compounds with various compositions were investigated. The sound speed, reflection coefficient, and transmission coefficient of the nitrile rubber in the frequency range of 200-1000 kHz were measured in a water-filled tank.

ACOUSTICAL PROPERTIES OF UNDERWATER BUBBLE LAYER WITH TRANSITION SUBLAYERS

  • Sutin, A.M.;Didenkulov, I.N.;Choi, B.K.;Yoon, S.W.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.190-194
    • /
    • 1993
  • In the ocean bubble layers play a significant role in the sound propagation as well as sound generation. Most of early works dealt with acoustic properties of the bubble layers with sharp flat boundaries. Bubble layers with sharp flat boundaries. Bubble layers with transition sublayers are more likely in the coean. In this paper a theory of sound propagation through plane bubble layers with transition sublayers at both borders was developed. It shows that the reflection and transmission coefficients depend on the thickness of transition sublayers. The theory with thicker transition sublayers shows weaker resonance properties of bubble layer. It gives better presentation for the peculiar behavior of the experimental data than that with sharp flat boundaries.

  • PDF

Communication Performance Analysis according to Seasons in West Sea (서해상에서의 계절에 따른 통신 성능 분석)

  • Kim, Ju-Ho;Bok, Tae-Hoon;Bae, Jin-Ho;Paeng, Dong-Guk;Lee, Chong-Hyun;Kim, Seong-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • Communication environments in the context of underwater channel are characterized to be bad by the characteristics of multipath. Multipaths are affected by various factors e.g. the temperature and the salinity of the ocean. In this paper, the representative sound speed profiles were calculated in the southern part of Baengnyeoung island so that the eigen-ray paths with the channel impulse responses were determined using the average sound speed profile of last decade. The performance of underwater communication was analyzed using the BPSK modulation and time reversal method. The significant differences of results were shown according to the change of season and carrier frequency by using computer simulation. In addition, improved performance is obtained using preprocess channel impulse response for the better comparison of two cases of summer and autumn.

Auditory Characteristics of Tiger shark Scyliorhinus torazame caught in the Coast of jeju Island (제주 연안에서 어획된 두툽상어의 청각 특성)

  • Ahn, Jang-Young;Choi, Chan-Moon;Lee, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.234-240
    • /
    • 2011
  • In order to obtain the fundamental data about the behavior of sharks by underwater audible sound, this experiment was carried out to investigate the auditory characteristics of tiger shark Scyliorhinus torazame which was caught in the coast of Jeju Island by heart rate conditioning method using pure tones coupled with a delayed electric shock. The audible range of tiger shark extended from 80Hz to 300Hz with a peak sensitivity at 80Hz including less sensitivity at 300Hz. The mean auditory thresholds of tiger shark at the frequencies of 80Hz, 100Hz, 200Hz and 300Hz were 90dB, 103dB, 94dB and 115dB, respectively. The positive response of tiger shark was not evident after the sound projection of over 300Hz. At the results, the sensitive frequency range of tiger shark is narrower than that of fish that has swim bladder. In addition, it is assumed that the most sensitive frequency in auditory thresholds of Chondrichthyes is lower than that of Osteichthyes. Critical ratios of tiger shark measured in the presence of masking noise in the spectrum level range of about 60-70dB (0dB re $1{\mu}Pa/\sqrt{Hz}$) increased from minimum 27dB to maximum 39dB at test frequencies of 80-200Hz. The noise spectrum level at the start of masking was distributed at the range of about 65dB within 80-200Hz.

The Hearing Ability of Black Rockfish Sebastes inermis to Underwater Audible Sound 2. The Auditory Critical Ratio (수중 가청음에 의한 볼락의 청각 능력 2. 청각 임계비)

  • LEE Chang-Heon;SEO Du-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.2
    • /
    • pp.151-155
    • /
    • 2001
  • In order to obtain the fundamental data on the auditory thresholds of fishes for marine ranching, the auditory thresholds of black rockfish Sebastes inermis were measured in the presence of masking noise in the spectrum level range of $73\~83$ dB (0 dB re $1{\mu}Pa/\sqrt{Hz}$) with a classical cardiac conditioning technique. Critical ratios were about $28\~34$ dB at $80\~300$ Hz and $47\~52$ dB at $500\~800$ Hz. The ratio increased almost linearly with increasing frequency to 500 Hz. The noise spectrum level at the start of masking was about 70 dB within the frequency range of $80\~800$ Hz excepting 65 dB at 300 Hz. It means that hearing of the black rockfish is masked in the natural environment with the noise spectrum level above 65 dB. The sound pressure level of $200\~300$ Hz recognized by black rockfish was above 96 dB under the ambient noise and the critical ratio of them was above 26 dB.

  • PDF

Optimal Structural Design of a Flextensional Transducer Considering the Working Environment (적용환경을 고려한 Flextensional 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1063-1070
    • /
    • 2008
  • The performance of an acoustic transducer is determined by the effects of many design variables, and mostly the influences of these design variables are not linearly independent of each other. To achieve the optimal performance of an acoustic transducer, we must consider the cross-coupled effects of the design variables. In this study, the variation of the performances of underwater acoustic transducer in relation to its structural variables was analyzed. In addition, the new optimal design scheme of an acoustic transducer that could reflect not only individual but also all the cross-coupled effects of multiple structural variables, and could determine the detailed geometry of the transducer with great efficiency and rapidity was developed. The validation of the new optimal design scheme was verified by applying the optimal structure design of a flextensional transducer which are the most common use for high power underwater acoustic transducer. With the finite element analysis(FEA), we analyzed the variation of the resonance frequency, sound pressure, and working depth of a flextensional transducer in relation to its design variables. Through statistical multiple regression analysis of the results, we derived functional forms of the resonance frequency, sound pressure, and working depth in terms of the design variables. By applying the constrained optimization technique, Sequential Quadratic Programming Method of Phenichny and Danilin(SQP-PD), to the derived function, we designed and verified the optimal structure of the Class IV flextensional transducer that could provide the highest sound pressure level and highest working depth at a given operation frequency of 1 kHz.

Conceptual Design of Cylindrical Hydrophone Arrays for Stabilization of Receiving Characteristics under Ocean Ambient Noise (해양 배경 소음 하의 수신 특성 안정화를 위한 원통형 하이드로폰 배열의 개념 설계)

  • Noh, Eunghwy;Lee, Hunki;Ohm, Won-Suk;Chang, Woosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.200-209
    • /
    • 2015
  • An underwater sound surveillance system detects and tracks enemy ships in real-time using hydrophone arrays, in which seabed-mounted sensor arrays play a pivotal role. In this paper the conceptual design of seabed-mounted, cylindrical hydrophone arrays for use in shallow coastal waters is performed via finite element calculations. To stabilize the receiving characteristics under the ocean ambient noise, a technique for whitening the ambient noise spectrum using a metal baffle is proposed. Optimization of the array configuration is performed to achieve the directivity in the vertical and azimuthal directions. And the effects of the sonar dome shape and material on the structural vibration and sound scattering properties are studied. It is demonstrated that a robust hydrophone array, having a sensitivity deviation less than 4 dB over the frequency range of interest, can be obtained through the whitening of the ambient noise, the optimization of the array configuration, and the design of acoustically transparent sonar domes.