• Title/Summary/Keyword: Underwater Radiated Noise

Search Result 90, Processing Time 0.026 seconds

A Study on the Absorptive Silencer for Reducing Noise Propagate in Seawater Pipes on Ship (함정의 해수 배관소음 저감을 위한 흡음형 소음기 연구)

  • Seo, Youngsoo;Park, Kyenghoon;Jeon, Jaejin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.770-776
    • /
    • 2013
  • Fluid-borne noise produced by seawater circulating pumps propagates through the seawater connected pipes and radiates from the hull opening of a ship. This noise causes the increases of underwater radiated noise and self noise of ship. To reduce the noise propagation through the seawater connected pipes, absorptive silencer must be needed. In this paper, theoretical model to analyze the transmission loss of absorptive silencer was presented and the design parameters of absorptive silencer were verified. Theoretical calculations were performed according to a thickness, a length, an internal pressure and mechanical properties of its absorptive material in order to analyze the characteristics of absorptive silencer. From the theoretical calculation results, the absorptive silencer was manufactured and transmission loss was measured in the test facilities. The results of theory and measurement are compared and discussed.

Study on the analysis of model propeller tip vortex cavitation inception (모형 추진기 날개 끝 보텍스 캐비테이션 초생분석 연구)

  • Seol, Hanshin;Kim, Seong-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.387-395
    • /
    • 2018
  • In this study, the noise characteristics of the propeller tip vortex cavitation and its inception were analyzed experimentally. Generally, tip vortex cavitation is the first appeared cavity that occurs in a propeller. If propeller tip vortex cavitation is appeared, the level and characteristics of underwater radiated noise changes dramatically compared with the non-cavitating propeller. Therefore, it is very important to analyze the noise characteristics of the propeller cavitation and to detect the cavitation inception in the development of the propulsion system for military vessel and underwater weapon system. The change of noise characteristics due to the inception and growth of the propeller tip vortex cavitation was analyzed. Various imaging-noise measurement and analysis technique were used to determine the inception of propeller cavitation.

Cavitation Noise Detection Method using Continuous Wavelet Transform and DEMON Signal Processing (연속 웨이브렛 변환 및 데몬 신호처리를 이용한 캐비테이션 소음 검출 방법)

  • Lee, Hee-chang;Kim, Tae-hyeong;Sohn, Kwon;Lee, Phil-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • Cavitation is a phenomenon caused by vapour cavities that is produced in rapid pressure changes. When the cavitation happened, the sound pressure level of a underwater radiated noise is increased rapidly. As a result, it can increase the probability of the identification or classification of a our warship's acoustic signature by an enemy ship. However, there is a problem that it is hard to precisely detect the occurrence of a cavitation noise. Therefore, this paper presents recent improvements in terms of the cavitation noise measurement by using continuous wavelet transform and DEMON(Detection of Envelope Modulation on Noise) signal processing. Then, we present that the suggested scheme is more suitable for detecting the cavitation than existing algorithms.

Analysis for Reducing Vibration Transmitted from the Sea-water Conveying Pipe to the Hull (선체로 전달되는 해수 이송 배관의 진동 저감 분석)

  • Han, Hyung-Suk;Jeong, Weui-Bong;Park, Kyung-Hoon;Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1177-1184
    • /
    • 2008
  • URN(underwater radiated noise) is one of the important performances of the battle ship related to the stealth. The main source of the URN is the structure-borne noise on the hull. And the pipe vibration transmitted to the hull is the main source of the structure-borne noise when the speed of the ship is lower than CIS(cavitation inception speed). In this paper, the vibration isolator(rubber mount) for the pipe system is described in order to reduce the structure-borne noise transmitted to the hull. The vibrations on the sea-water conveying pipes and their supports are measured in order to know how much vibration occurs on those positions. Based on these test results, the improved design of the rubber mount is suggested by the parametric study and is verified numerically with the pipe and hull model.

A Concept on the M&S-based T&E for Ship Acoustics (M&S 기반 함정음향 시험평가 개념)

  • 조창봉
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.24-33
    • /
    • 2004
  • Recently, ship acoustics takes more important role in acoustic stealth and classification of underwater targets. In this paper, a theoretical concept is proposed for M&S-based test and evaluation of ship acoustics. The concept is based on two different approaches: on Top-Down method which emphasizes the survivability of the ship and on Bottom-Up method which considers acoustic characteristics of the ship-equipments. In order to improve the effectiveness of M&S-based T&E for ship acoustics, it is recommended in this paper to compromise the two approaches as adequate.

Detection of Signal Frequency Lines for Acoustic Target using Autoassociative Momory Neural Network (자동 연상 기억장치 신경망을 이용한 음향 표적의 신호 주파수선 탐지)

  • Lee, Sung-Eun;Hwang, Soo-Bok;Nam, Ki-Gon;Kim, Jae-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.118-124
    • /
    • 1996
  • Signal frequency lines generated from the acoustic targets are of particular importance for target detection and classification in passive sonar systems. The underwater noise consists of a mixture of ambient noise and radiated noise of targets. Detction of exact signal frequency lines depends on signal detection threshold and variation of ambient noise. In this paper, a detection method of signal frequency lines for acoustic targets using autoassociative memory (ASM) neural network, which is not sensitive to variation of signal detection threshold and ambient noise, is proposed. It is confirmed by simulation and application of real acoustic targets that the proposed method shows good performance for detection of signal frequency lines.

  • PDF

Production & Performance Assessment of Composite Material Flexible Propeller (복합재료 유연 프로펠러의 제작 및 성능 평가)

  • Lee, Sang-Gab;Byun, Joon-Hyung;Paik, Bu-Geun;Hyun, Beom-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.667-674
    • /
    • 2009
  • The researches on the development of composite material underwater vehicle propeller have been actively attempted for the reduction of radiation noise with outstanding damping effects. Composite material propellers have almost been designed and produced by the foreign experts, and it is difficult to obtain the related informations about their flow, vibration, material characteristics because they are treated as the secrets with close relationship to the military technology, especially in the case of underwater vehicles. For the security of domestic manufacture of composite material propeller and the comparison and examination of its performance and radiation noise characteristics with those of German CONTUR composite material propeller, two propellers were self-produced according to the fiber weaving and array using compressible molding process and their self performances and radiation noise characteristics were measured. The mean fluctuations of blade tip of self-produced composite material propeller were increased and the radiation noises in the low frequency band were reduced compared to those of CONTUR, which could be estimated as the change of material characteristics and also be thought to be used for the future research informations.

Prediction for Underwater Static Magnetic Field Signature Generated by Hull and Internal Structure for Ferromagnetic Ship (강자성 함정 선체 및 내부 장비에 의한 수중 정자기장 신호 예측)

  • Yang, Chang-Seob;Chung, Hyun-Ju;Ju, Hye-Sun;Jeon, Jae-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.167-173
    • /
    • 2011
  • Underwater static magnetic field signature for the naval ship has been widely used as the detonating source of the influence mine system because it is possible to make an accurate target detection in the near field although the magnetic field falls off relatively fast with distance in comparison with the underwater radiated noise signal. In this paper, we describe the prediction results about the underwater static magnetic field by the ferromagnetic hull, the internal structures and the main on-board equipment for the target vessel using the commercial FEM software. Also we analyze the degaussing effectiveness for the target vessel through the degaussing coils arrangement.

Comparative Study on Viscous and Inviscid Analysis of Partial Cavitating Flow for Low Noise Propeller Design (저소음 프로펠러 설계를 위한 부분공동 유동의 점성 및 비점성 수치해석 비교 연구)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Park, Cheol-Soo;Kim, Gun-Do
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.358-365
    • /
    • 2014
  • When a ship propeller having wing type sections rotates at high speed underwater, local pressure on the blade decreases and various types of the cavitation inevitably occur where the local pressure falls below the vapor pressure. Fundamentally characteristics of the cavitation are determined by the shapes of the blade section and their operating conditions. Underwater noise radiated from a ship propeller is directly connected to the occurrence of the cavitation. In order to design low noise propeller, it is preferentially demanded to figure out key features: how the cavity is generated, developed and collapsed and how the effect of viscosity works in the process. In this study, we first perform inviscid analysis of the partial cavity generated on two dimensional hydrofoil. Secondly, viscous analysis using FLUENT with different turbulence and cavitation models are presented. Results from both approaches are also compared and estimated.

RLSLTDE Algorithm for Bearing Estimation of the Underwater Acoustic Signal (수중음향신호 입사방위 추정을 위한 RLSLTDE 알고리즘)

  • Choi, Jae-Yong;Son, Kweon;Dho, Kyeong-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.84-90
    • /
    • 2000
  • The bearing detection of radiated target noise is very important at underwater acoustic measurement and passive detection. It differs the arrival tines of received signal at each sensor. Therefore, the bearing can be obtained from the time delay. This paper proposes a new algorithm using the RLSL adaptive filter for TDE. The proposed method is particularly attractive when there is a limitation of priori information about the received signal spectra and when the delay is subject to variation. As the simulation results, it is shown that the proposed algorithm has better convergence characteristics and TDE speed, and so that the usefulness of proposed algorithm is confirmed.

  • PDF