• Title/Summary/Keyword: Underwater Noise Source

Search Result 87, Processing Time 0.029 seconds

Beam analysis of underwater conformal array by using cylindrical acoustic holography (원통면 음향 홀로그래피를 이용한 수중음향 곡면배열센서의 빔 해석)

  • Kwon, Hyu-Sang;Park, Seong-Chol;Seo, Hee-Seon;Shin, Gu-Kyun;Joh, Ghee-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.111-116
    • /
    • 2009
  • As an experimental technique to analyze the far-field characteristics of underwater cylindrical array sensors, cylindrical acoustic holography is studied. Inside an laboratory water tank, far-field directivity patterns as well as near-field source images are reconstructed from the measured hologram by hydrophone array. Approximate equation for far-field directivity estimation is derived based on stationary phase method. The simulation and experiment show well usefulness of the proposed method in application of underwater array sensors.

  • PDF

Overview of anthropogenic underwater sound effects and sound exposure criteria on fishes (어류에 미치는 인위적인 수중소음 영향과 피해기준에 대한 고찰)

  • PARK, Jihyun;YOON, Jong-Rak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.19-40
    • /
    • 2017
  • A scientific and objective sound exposure criterion for underwater sound damage on fish has been required since there has been many disputes between an underwater sound maker and a fish damage receiver. The existing criteria are still incomplete scientifically owing to a degree of variability of underwater sounds, diversity of fish hearing sensitivity and damage types, etc. This study reviews existing studies on a hearing mechanism of fish species, manmade underwater sound characteristics and sound exposure assessment parameters, and recent sound exposure criteria. A governing equation for damage coverage estimation and damage coverage dependency on sound source level, ambient noise and transmission loss are also reviewed and interpreted based on sound exposure environments. The foreign and Korean (National Environmental Dispute Medication Commission) criteria are reviewed and compared based on scientific aspects. In addition, the deficit and limit of Korean criteria are presented. The objective of this study is to give a direction for related researches and legislation of sound exposure criteria on fish.

Development of formulation Q1As method for quadrupole noise prediction around a submerged cylinder

  • Choi, Yo-Seb;Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Han-Shin;Jung, Chul-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.484-491
    • /
    • 2017
  • Recent research has shown that quadrupole noise has a significant influence on the overall characteristics of flow-induced noise and on the performance of underwater appendages such as sonar domes. However, advanced research generally uses the Ffowcs Williams-Hawkings analogy without considering the quadrupole source to reduce computational cost. In this study, flow-induced noise is predicted by using an LES turbulence model and a developed formulation, called the formulation Q1As method to properly take into account the quadrupole source. The noise around a circular cylinder in an underwater environment is examined for two cases with different velocities. The results from the method are compared to those obtained from the experiments and the permeable FW-H method. The results are in good agreement with the experimental data, with a difference of less than 1 dB, which indicates that the formulation Q1As method is suitable for use in predicting quadrupole noise around underwater appendages.

Characteristics of Snapping Shrimp Sound Observed in the Korean Coast of the Yellow Sea (황해 연안에서 관측된 딱총새우 음의 특성)

  • Kim, Bong-Chae;Kim, Byoung-Nam;Shin, Chang-Woong;Kim, Cheol-Soo;Choi, Bok-Kyoung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.142-146
    • /
    • 2007
  • Ambient noise was measured for 3 hours on May, 2001 at a site of 20 m water depth in the Korean coast of the Yellow Sea. During the measurement, the strong underwater sound assuming by marine life was continually observed. The spectrum level of this sound was very high compared to that of underwater ambient noise over the frequency range from 1 to 20 kHz. Therefore, this underwater sound can continually affect the ambient noise level. In this study, the source of the underwater sound was investigated. The snapping shrimp was estimated as reliable source. It was confirmed through comparison with experimental results described in previously literatures. It was also confirmed through analysis of snapping shrimp sound measured under laboratory conditions.

Acoustical characteristics of prototype mechanical white noise generator as an underwater sound source (시험 제작한 기계식 백색소음기 수중음원의 음향적 특성)

  • Shin, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.244-251
    • /
    • 2014
  • This paper describes a prototype mechanical white noise generator has a source level of more than 170.0 dB (re $1{\mu}Pa$ at 1 m) at the frequency range of 10 Hz to 100 kHz. The results of performance evaluation of the generator are as follows. The average source level of the generator measured by a step of $15^{\circ}$ in horizontal (0 to $360^{\circ}$, 25 points) was 185.2 (SD (standard deviation): 2.3) dB (re $1{\mu}Pa$ at 1 m). The maximum and minimum source levels were appeared at the frequency range of 2.5 to 5.0 kHz and around 100 kHz, respectively. The average source levels at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$ were 162.9 (SD: 10.6), 168.4 (SD: 10.0), 162.1 (SD: 9.1) and 166.5 (SD: 11.1) dB (re $1{\mu}Pa$ at 1 m). The average source level measured by a step of $30^{\circ}$ in vertical was 184.9 (SD: 2.2) dB (re $1{\mu}Pa$ at 1 m). The relative maximum variation width of the source levels in horizontal and in vertical measurement were less than 7.0 dB and 1.0 dB, respectively.

Collective Oscillations of a Bubble Cloud as a Source of Underwater Ambient Noise in the Ocean (해양에서의 수중소음원으로서 기포군의 집단운동)

  • Yoon, S.W.;Park, K.J.;Crum, L.A.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.47-51
    • /
    • 1991
  • it is well observed in the ocean that the surface disturbances due to rain, wind and breaking waves generate bubble clouds several meters deep from the water surfaces. Thses kinds of bubble clouds can work as a physical mechanism to produce underwater ambient noise. In the laboratory experiment observing the noise generated from a bubble cloud we showed a role of individual bubbles in collective oscillations of a bubble cloud. The experimental data agree very well with the theoretical predictions. These results confirm that the collective oscillations of a bubble cloud is one of the more likely mechanisms for an ocean ambient noise source around several hundred hertz.

  • PDF

Characteristics Evaluation of the Lens for Underwater Acoustic Imaging (수중음향 영상화를 위한 렌즈 제작 및 특성 평가)

  • Cho, Wan-Ho;Kwon, Hyu-Sang;Cho, Yo-Han;Seo, Hee-Seon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.687-696
    • /
    • 2016
  • A series of process to design an acoustic lens for underwater imaging is reviewed and the method to evaluate characteristics of the lens is investigated. If the target specification of lens is given, the design process consists of the material selection, evaluation of its properties, lens geometry design, prediction of lens characteristics, manufacturing, and evaluation by measurement. In this study, an actual acoustical lens is made by cutting polymethylpentene block. The characteristics of lens are predicted by the hybrid method, combination of ray tracing and Rayleigh integral. For the direct comparison between the prediction and measurement results, a simulation method based on the equivalent source method is suggested to reflect the actual radiation pattern of transducer used for measurements. Finally, the measurement is conducted in a small water tank to observe the actual characteristics of the manufactured lens.

Investigation of Underwater Sound Detection Characteristics of Fiber Optic Hydrophone Array by using an Unbalanced Interferometer (불평형 간섭계를 이용한 광섬유 청음기 배열의 수중음향 감지특성 연구)

  • 이종길;남성현;윤형규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.617-621
    • /
    • 1998
  • Optical sensing techniques have been associated with high sensitivity and precise measurements and attracted considerable attention in recent years. In this paper, two channels TDM(Time Division Multiplexing) fiber-optic hydrophone array for the underwater applications was fabricated and their acoustic characteristics were investigated by using the acoustic water tank. A fiber length of the order of 100m is wounded at the hollow cylinder type aluminum mandrel. An unbalanced interferometer (discrete Mach-Zehnder type) was used. Sound detection performance is tested in the underwater tank with 2kHz continuous sound source. Finally, it is shown that two channels TDM(Time Division Multiplexing) fiber-optic hydrophone array can detect 2kHz sound stably.

  • PDF

Marine Environmental Impact Assessment on the Construction of Solar Plant near Shrimp Farms (새우양식장인근 태양광공사에 따른 소음저감방안연구)

  • Oh, Hyun-Taik;Kim, Yeong-Tae;Tac, Dae-Ho;Lee, Dae-In;Kim, Gi-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.130-139
    • /
    • 2015
  • To assess the noise stress of shrimp farms reasonably, we need a noise observation data underneath the waters first. But, it did not collect yet and airborne noise transfers to water noise wave using transition calculation. In case of construction of solar energy without noise stress protection wall, the threshold values (140 dB) from circumstance of underwater noise exceed within 17m at $S_2$ (15m away from source) and $S_3$ (15m away from source). Considering additional way to decrease the construction noise, all cases including minimum mode(Case A), general mode(Case B), and maximum mode(Case C) meet the guideline of underwater noise for fish farms. In case of the underwater noise could affect the fish farm, it is necessary to understand about farming species such as shrimp, monitoring of present states, and protection way under the construction.