• Title/Summary/Keyword: Underwater Monitoring

Search Result 148, Processing Time 0.031 seconds

A Development for the Acoustic Underwater Image Transmission System in VORAM Ship (VORAM호의 초음파 수중영상 전송시스템 개발)

  • 임용곤;박종원;강준선
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.351-358
    • /
    • 1998
  • This paper deals with the underwater image transmission system which includes in AUV(Autonomous Underwater Vehicle) Project(that is VORAM(Vehicle for Ocean Research And Monitoring)), developed by KIMM for survey and investigation of a sea-bed through transmitting the underwater image to the mother ship. The system presented in this paper consists of a transducer which has a 136KHz center frequency and it's 10KHz bandwidth, pre-amplifier, $\pi$/4 QPSK(Quadreature Phase Shift Keying) modulation/demodulation method, image compressing method using JPEG technique and modified Stop & protocol. The experimental results of the system is verified to a high performance with 9600 bps for transmitting the underwater image through the basin test. The results of test are also verified which allows to desirable transmission performance compared with the existing developed system and the possibility to put the practical use of survey and investigation. And, the viterbi coding and adaptive equalizer for cancelling the multipath effect are developing for more effective image transmission system. Also, these technique will very effectively adapt to realtime image transmission system.

  • PDF

A study on underwater multiple sensors acoustic communication for offshore plant monitoring (해양플랜트 제어 감시용 수중 다중 센서 음향 통신 기법 연구)

  • Ahn, Tae-Seok;Baek, Chang-Uk;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.91-98
    • /
    • 2017
  • In this paper, we analyzed underwater multiple sensors acoustic communication technologies for monitoring and control of offshore plants in underwater environments. Information on underwater structure of offshore plants is transmitted and received by multiple sensors at the same time. Using multiple sensors with same frequency, we employed spread spectrum techniques to avoid interferences between these multiple sensors. Owing to the multi-path characteristic in underwater communications, the performance is degraded. In order to improve the performance of underwater multiple sensors communication, we proposed turbo equalized RAKE receiver structures. Assuming that the number of sensors is fixed to three, we conformed the effectiveness of the proposed method as compared to the conventional one.

Optimal selection of fish assemblage survey method through comparing the result (어류군집 조사 결과 비교를 통한 최적의 방법 선택)

  • Jae-Young KIM;Sang-Min EOM;Byeong-Mo GIM;Tae Seob CHOI
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.128-141
    • /
    • 2024
  • Fish resource surveys were conducted near Jeju Island in June, August and October 2021 using an underwater camera monitoring system, fish pots, and SCUBA diving methods. The efficiency of the methods used to survey fish resources was compared using the number of individuals compared to area per unit time (inds/m3/h) and the number of species compared to area per unit time (spp./m3/h). As a result of comparing the number of individuals compared to the area per unit time (inds/m3/h), the order was underwater camera 214.69, SCUBA diving 124.62, and fish pots 0.57 inds/m3/h. The number of species compared to area per unit time (spp./m3/h) is in the following order: SCUBA diving 0.85, underwater camera 0.38, and fish pots 0.01 spp./m3/h. The fish resource monitoring method using underwater cameras was found to be more efficient in individual counts, and the SCUBA diving method was found to be more efficient in species counts. When considering cost and survey efficiency, the fish resource survey method using underwater cameras was judged to be more effective. The results of this study are expected to be widely used in estimating the population density of fish, which is the core of future fisheries resource surveys.

The Underwater Environment Monitoring System based on Ocean Oriented WSN(Wireless Sensor Network) (해양 적응형 무선센서네트워크 기반의 수중 환경 모니터링 시스템)

  • Yun, Nam-Yeol;NamGung, Jung-Il;Park, Hyun-Moon;Park, Su-Hyeon;Kim, Chang-Hwa
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.122-132
    • /
    • 2010
  • The analysis of ocean environment offers us essential information for ocean exploration. But ocean environment has a lot of environmental variables such as the movements of nodes by an ocean current, corrosion by salt water, attenuation of radio wave, occurrences of multi-path and difficulty of sensor nodes' deployment. It is accordingly difficult and complex to gather and process the environmental information through ocean data communication due to these constraints of ocean environment unlike the terrestrial wireless networks. To overcome these problems, we organized ocean communication network for monitoring underwater environment by real experiment in Gyeongpoho similar to ocean environment. Therefore, this paper aims at overcoming major obstacles in ocean environment, effectively deploying sensor nodes for ocean environment monitoring and defining an efficient structure suitable for communication environment by the implementation of ocean environment monitoring system in Gyeongpoho.

Turbidity Characteristics of Korean Port Area (국내 주요 항만 인근의 탁도 특성 분석)

  • Jang, In-Sung;Won, Deokhee;Baek, Wondae;Shin, Changjoo;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8889-8895
    • /
    • 2015
  • It is necessary to secure the underwater visibility in order to perform underwater works such as rubble mound leveling or inspection and management of underwater structures. In this study, turbidity data for typical port area in Korea were measured and analyzed according to the region. Underwater monitoring system including underwater camera and sonar system, which can be effectively attached to underwater equipment for various turbidity conditions, was also investigated.

Position Tracking of Underwater Robot for Nuclear Reactor Inspection using Color Information (색상정보를 이용한 원자로 육안검사용 수중로봇의 위치 추적)

  • 조재완;김창회;서용칠;최영수;김승호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2259-2262
    • /
    • 2003
  • This paper describes visual tracking procedure of the underwater mobile robot for nuclear reactor vessel inspection, which is required to find the foreign objects such as loose parts. The yellowish underwater robot body tend to present a big contrast to boron solute cold water of nuclear reactor vessel, tinged with indigo by Cerenkov effect. In this paper, we have found and tracked the positions of underwater mobile robot using the two color informations, yellow and indigo. The center coordinates extraction procedures is as follows. The first step is to segment the underwater robot body to cold water with indigo background. From the RGB color components of the entire monitoring image taken with the color CCD camera, we have selected the red color component. In the selected red image, we extracted the positions of the underwater mobile robot using the following process sequences: binarization labelling, and centroid extraction techniques. In the experiment carried out at the Youngkwang unit 5 nuclear reactor vessel, we have tracked the center positions of the underwater robot submerged near the cold leg and the hot leg way, which is fathomed to 10m deep in depth.

  • PDF

A Hierarchical Underwater Acoustic Sensor Network Architecture Utilizing AUVs' Optimal Trajectory Movements (수중 무인기의 최적 궤도 이동을 활용하는 계층적 수중 음향 센서 네트워크 구조)

  • Nguyen, Thi Tham;Yoon, Seokhoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1328-1336
    • /
    • 2012
  • Compared to terrestrial RF communications, underwater acoustic communications have several limitations such as limited bandwidth, high level of fading effects, and a large underwater propagation delay. In this paper, in order to tackle those limitations of underwater communications and to make it possible to form a large underwater monitoring systems, we propose a hierarchical underwater network architecture, which consists of underwater sensors, clusterheads, underwater/surface sink nodes, autonomous underwater vehicles (AUVs). In the proposed architecture, for the maximization of packet delivery ratio and the minimization of underwater sensor's energy consumption, a hybrid routing protocol is used. More specifically, cluster members use Tree based routing to transmit sensing data to clusterheads. AUVs on optimal trajectory movements collect the aggregated data from clusterhead and finally forward the data to the sink node. Also, in order to minimize the maximum travel distance of AUVs, an Integer Linear Programming based algorithm is employed. Performance analysis through simulations shows that the proposed architecture can achieve a higher data delivery ratio and lower energy consumption than existing routing schemes such as gradient based routing and geographical forwarding. Start after striking space key 2 times.

The design of wall-climbing underwater robot system (수중 벽면 주행 기구의 설계)

  • 김병만;김경훈;박영수;박기용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.237-240
    • /
    • 1997
  • The design of underwater inspection robot system is presented. This robot system is designed for wall inspection in the nuclear plant facility. This paper describes the major components of the robot and its structures. This robot system is consisted of three parts : mechanical electrical and sensing pail. The main problem of designing mechanical part is to select the mechanism of driving. In this system the propeller driving mechanism is selected which can be move the robot continuously. For reducing the size of robot, we designed the CPU and motor controller board. The sensor system is consisted of two parts. One is environment monitoring part and the other is robot localization system.

  • PDF

Dual Super Cluster Head Underwater Sensor Network Routing Protocol (듀얼 슈퍼 클러스터 헤드 해양 센서 네트워크 라우팅 프로토콜)

  • Chang, Young-Il;Shin, Soo-Young;Prak, Hyun-Mun;Park, Soo-Huyn
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.87-96
    • /
    • 2006
  • Wireless Sensor Network (WSN) is researched in various filed. Underwater Sensor Network (UWSN) is used various purpose such as underwater environment monitoring. But, WSN is researched in the terrestrial that uses mainly radio frequency, The existing terrestrial research is incongruent to apply to underwater. Therefore, we propose UWSN architecture that considers underwater environment. In this paper, UWSN applied cluster technique and functional node constructs. Each cluster collects and sends cluster data. Dual super cluster head receives cluster data and transmits each in the base-station. We implement WSN routing algorithm, and construct test-bed and analyze cluster data receive rate.

  • PDF

Environment Monitoring System Using RF Sensor (RF 센서를 이용한 해양 환경 관리 시스템)

  • Cha, Jin-Man;Park, Yeoun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.896-898
    • /
    • 2012
  • Recently, many countries are making efforts for the development of ocean resources because the necessity and importance of the ocean resources are increased. Underwater sensor networks have emerged as a very powerful technique for many applications, including monitoring, measurement, surveillance and control and envisioned to enable applications for oceanographic data collection, ocean sampling, environmental and pollution monitoring, offshore exploration, disaster prevention, tsunami and seaquake warning, assisted navigation, distributed tactical surveillance, and mine reconnaissance. The idea of applying sensor networks into underwater environments (i.e., forming underwater sensor networks) has received increasing interests in monitoring aquatic environments for scientific, environmental, commercial, safety, and military reasons. The data obtained by observing around the environment are wireless-transmitted by a radio set with various waves. According to the technical development of the medium set, some parameters restricted in observing the ocean have been gradually developed with the solution of power, distance, and corrosion and watertight by the seawater. The actual matters such as variety of required data, real-time observation, and data transmission, however, have not enough been improved just as various telecommunication systems on the land. In this paper, a wireless management system will be studied through a setup of wireless network available at fishery around the coast, real-time environmental observation with RF sensor, and data collection by a sensing device at the coastal areas.

  • PDF