• Title/Summary/Keyword: Underwater Behavior

Search Result 110, Processing Time 0.023 seconds

Analysis on underwater stability of the octagonal pillar type fish cage and mooring system (팔각기둥형 가두리 시스템의 수중 안정성 분석)

  • Yang, Yong-Su;Park, Seong-Wook;Lee, Kyounghoon;Lee, Dong-Gil;Jeong, Seong-Jae;Bae, Jaehyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • The sea cage in marine aquaculture might be varied such as on the stability and shape in the open sea by environmental factors. To evaluate the stability of net cage structures in the open sea, the physical and numerical modeling techniques were applied and compared with field observations. This study was carried out to analyse the stability and the volume loss which would have an effect on the fish swimming behavior in the octagonal pillar type fish cage under the open sea. As a results, the volume loss ratio of the fish cage as measured using a depth sensor was indicated a value of the 30.3% under the current velocity (1.1m/s). The fish cage should be consisted of a concrete block with a weight over 10 tons, a mooring rope diameter over 28mm PP, and a shackle of 25mm under the current speed of 1m/sec for reasonable stability.

Prediction of the Unwinding Performance of Optical Fiber Cables by Nonlinear Dynamics Analysis (비선형 동적 거동 해석을 통한 광섬유 케이블의 풀림 성능 예측 연구)

  • Lee, Jae-Wook;Kim, Kun-Woo;Kim, Hyung-Ryul;Yoo, Wan-Suk;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.347-352
    • /
    • 2010
  • Under harsh environments in which remote control is impossible, wire-guided control technology is effective for controlling distant underwater vehicles that serve mother ships in missions, such as exploration and installation. When the fiber is unwound from the spool, tension fluctuations occur in the fiber because of the relative velocity of the moving vehicles and unwinding velocity of the fiber. As a result, fiber cables exhibit complicated behaviors, become entangled, and may get cut. In this study, a spool-like design for winding tens of kilometers of fiber cables is proposed by analyzing cable winding. The unwinding performance of the designed spool is estimated by performing nonlinear dynamics analysis of the nonlinear behavior and tension fluctuations observed during the unwinding of the fiber.

Structural stability analysis of jellyfish blocking net using numerical modeling (수치모델링을 활용한 해파리 차단 그물의 안정성 해석)

  • LEE, Gun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.19-31
    • /
    • 2022
  • Damages by jellyfish are occurring frequently around the world. Among them, accidents caused by jellyfish stings are serious enough to cause death. So we designed a jellyfish blocking net and analyzed its stability to prevent sting caused by jellyfish entering the beach. To this end, the dynamic behavior of the jellyfish blocking net according to the current speed (0.25-1.0 m/s) and the net type (50, 100 and 150 mm) on the upper part of the blocking net was modeled using the mass spring model. As a result of simulations for the model, the horizontal tension (horizontal component of the mooring tension) of the mooring line increased with the decrease in the mesh size on the upper part of the blocking net at all current speeds, but exceeded the holding force at high tides faster than 0.5 m/s and exceeded the holding force at all current speeds at low tide. Therefore, the jellyfish blocking nets showed poor stability overall. The depth of the float line had a little difference according to the upper mesh size and increased lineary proportional to the current speed. However, the float line sank too much to block the incoming jellyfish. These analysis results helped us find ways to improve the stability of the jellyfish blocking net, such as adjusting the length of the mooring line and improving the holding power. Therefore, it is expected that this technology will be applied us various underwater structures to discover the weaknesses of the structures and contribute to increasing the stability in the future.

Surface erosion of MICP-treated sands: Erosion function apparatus tests and CFD-DEM bonding model

  • Soo-Min Ham;Min-Kyung Jeon;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2023
  • Soil erosion can cause scouring and failures of underwater structures, therefore, various soil improvement techniques are used to increase the soil erosion resistance. The microbially induced calcium carbonate precipitation (MICP) method is proposed to increase the erosion resistance, however, there are only limited experimental and numerical studies on the use of MICP treatment for improvement of surface erosion resistance. Therefore, this study investigates the improvement in surface erosion resistance of sands by MICP through laboratory experiments and numerical modeling. The surface erosion behaviors of coarse sands with various calcium carbonate contents were first investigated via the erosion function apparatus (EFA). The test results showed that MICP treatment increased the overall erosion resistance, and the contribution of the precipitated calcium carbonate to the erosion resistance and critical shear stress was quantified in relation to the calcium carbonate contents. Further, these surface erosion processes occurring in the EFA test were simulated through the coupled computational fluid dynamics (CFD) and discrete element method (DEM) with the cohesion bonding model to reflect the mineral precipitation effect. The simulation results were compared with the experimental results, and the developed CFD-DEM model with the cohesion bonding model well predicted the critical shear stress of MICP-treated sand. This work demonstrates that the MICP treatment is effective in improving soil erosion resistance, and the coupled CFD-DEM with a bonding model is a useful and promising tool to analyze the soil erosion behavior for MICP-treated sand at a particle scale.

Behavior of amber fish, Seriola aureovittata released in the setnet (정치망내에 방류한 부시리, Seriola aureovittata 의 행동)

  • 신현옥;이주희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.2
    • /
    • pp.161-169
    • /
    • 1999
  • This paper describes the swimming and escaping behavior of amber fish, Seriola aureovittata released in the first bag net of the setnet and observed with telemetry techniques. The setnet used in experiment is composed of a leader, a fish court with a flying net and two bag nets having ramp net. The behavior of the fish attached an ultrasonic depth pinger of 50 KHz is observed using a prototype LBL fish tracking system. The 3-D underwater position ofthe fish is calculated by hyperbolic method with three channels of receiver and the depth of pinger. The results obtained are as follows: 1. The fish released on the sea surface was escaped down to 15 m depth and rised up to near the sea surface during 5 minutes after release. The average swimming speed of the fish during this time was 0.87 m/sec. 2. The swimming speed of the fish is decreased slowly in relation to the time elapsed and the fish showed some escaping behavior forward to the fish court staying 1 to 7 m depth layer near the ramp net. The average speed of the fish during this time was 0.52 m/sec. 3. During 25 minutes after beginning of hauling net, the fish showed a faster swimming speed than before hauling and an escaping behavior repeatedly from the first ramp net to the second one in horizontal. In vertical, the fish moved up and down between the sea surface and 20 m depth. After this time, the fish showed the escaping behavior forward to fish court after come back to the first ramp net in spite of the hauling was continued. It is found that the fish was escaped from the first ramp net to the fish court while the hauling was carried out. The average speed of the fish after beginning of hauling was 0.72 m/sec which increased 38.5 % than right before the hauling and showed 0.44 to 0.82 m/see of speed till escaping the first bag net. The average swimming speed during observation was 0.67 m/sec (2.2 times of body length).

  • PDF

Behavioral Analysis of Silt Protectors in Seawater Using the Mass-Spring Model (질량-스프링 모델을 이용한 해수 중 오탁방지막 거동해석)

  • Lee, Choon-Woo;Kim, Ok-Sam;Shin, Hyun-Chool;Hwang, Doo-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.194-199
    • /
    • 2017
  • When sea tide and wave velocity change, the behavior of silt protectors underwater changes, and a hydraulic force exceeding the anchor wave force is applied. In this study, the movement mechanism of a silt protector has been analyzed using the mass-spring method. The initial position of the silt protector was in the Jindo area near Gwangpo Port (742-1, Gyupori, Chongdo-myeon, Jindo-gun, Jeonnam, Korea). The tension required to exceed the holding power of the anchor was 0.05 m/s at 318 sec., 0.15 m/s at 77 sec., 0.25 m/s at 43 sec., and 0.3 m/s at 37 sec.. As the anchor started to move from the sea floor and the tide speed increased to 0.01 m/s, anchor movement start time shortened by an average of 11.2 sec.. Compared with when tide was the only affecting factor, the silt protector and anchor were found to have moved 19.7 % at 0.1 m/s, 7.6 % at 0.15 m/s, 5.8 % at 0.2 m/s, 4.3 % at 0.25 m/s and 2.8 % at 0.3 m/s, showing an increase. When wave effect was added to the tide, anchor movement started when the flow rate was slow 7.6 % of the time. With a high flow velocity, anchor movement started without any significant difference less than 4.3 % of the time. When tide speed exceeded 0.13 m/s and the direction of the waves matched, the silt protector was not able to perform due to collisions with surrounding sea structures. When installing a silt protector, the fluid flow situation and the silt protector situation must be carefully analyzed using the mass-spring method to apply the result found in this study.

Numerical study on tunnel design for securing stability at connection between submerged floating tunnel and bored tunnel (수중터널 지반 접속부 안정성 확보를 위한 터널 설계에 대한 수치해석적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • Submerged floating tunnel (SFT) is a type of tunnel that allows tunnel segments to float underwater by buoyancy, and is being actively studied in recent years. When the submerged floating tunnel is connected to the ground, the tunnel and the bored tunnel inside the ground must be connected. There is risk that the stress will be concentrated at the connection between the two tunnels due to the different constraints and behavior of the two tunnels. Therefore, special design and construction methods should be applied to ensure the stability around the connection. However, previous studies on the stability at the connection site have not been sufficiently carried out, so study on the basic stage of the stability at connection site are necessary. In this study, numerical analysis simulating the connection between submerged floating tunnel and the bored tunnel confirmed that the shear strain concentration occurred in the ground around the connection, and it was analyzed that the structural factors can be handled during construction to have effects on the stability of the ground around the connection. Numerical results show that the risks from disproportionate displacements in the two tunnels can be mitigated through the construction of grouting material and joint design. Although the results from this study are qualitative results, it is expected that it will contribute to the determination of structural factors and risk areas that should be considered in the design of connections between the submerged floating tunnel and bored tunnel in the future studies.

Hydrodynamic Analysis of Submerged Floating Tunnel Structures by Finite Element Analysis (유한요소해석을 통한 해중터널의 유체동역학 해석)

  • Kim, Seungjun;Park, Woo-Sun;Won, Deok-Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.955-967
    • /
    • 2016
  • As transportation systems for connecting lands and islands, oversea long-span bridges, underwater tunnels, and immersed tunnels have been mainly used so far. Submerged floating tunnels (SFTs) moored under specific water depth are one of the newest oversea transportation system. Compared to other existing systems, the new system requires relatively less construction cost and time. But, there is still no construction example. For reasonable design of the tunnel and mooring lines the rational structural analysis should be firstly performed. Unlike common transportation structures, the submerged tunnels are mainly affected by the wave, vary irregular excitation component. So, the analysis scheme might be difficult because of the characteristics of the submerged structures. This study aims to suggest the rational global performance analysis methodology for the submerged tunnels. Using ABAQUS the dynamic response of the experimental models studied by KIOST (2013) was investigated considering regular waves. By comparing the simulation results with the experimental results, the feasibility of the numerical simulation was verified. Using the suggested method, the effects of initial inclination of the tethers and draft of the tunnel on the dynamic behavior were studied. In addition, dynamic response of a SFT under the irregular wave was examined.

Experimental Analysis of Towing Attitude for I-type and Y-type Tail Fin of Active Towed SONAR (I 형 및 Y 형 꼬리 날개 능동 예인 음탐기의 예인 자세에 대한 실험적 분석)

  • Lee, Dong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.579-585
    • /
    • 2019
  • Increasing the detection probability of underwater targets necessitates securing the towing stability of the active towed SONAR. In this paper, to confirm the effects of tail wing fin on towing attitude and towing stability, two scale model experiments and one sea trials were conducted and the results were analyzed. The scale model tests measured the towing behavior of each of the tail fin shapes according to towing speed in a towing tank. The shape of the tail fin used in the scale model test was tested with an I-type tail fine and four Y-type tail fins, totaling five tail fins of the two kinds. The first scale model test confirmed that the Y-type tail fin was superior to the I-type tail fin in towing attitude and towing stability. The second scale model test confirmed the characteristics of the vertical tail fin height increase and the lower horizontal tail fin inclination angle application shape based on the Y-type tail fin. The shape of the application of the lower horizontal tail fin inclination angle showed the best performance. In order to verify the results of the scale model test, a full size model was constructed, sea trials were performed, and the towing attitude was measured. The results were similar to those of the scale model test.

Evaluation of the Movement Pattern of Squaliobarbus curriculus Inhabiting in the Mid-lower Part of Geum River Using Acoustic Telemetry (수중 음향 측정방식을 이용한 금강 중.하류의 눈불개 이동성 평가)

  • Yoon, Ju-Duk;Kim, Jeong-Hui;In, Dong-Su;Hwang, Eun-Ji;Yoon, Johee;Lee, Young-Joon;Chang, Kwang-Hyeon;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.482-489
    • /
    • 2012
  • Visual monitoring is hard to apply on fish because they are living in a water system. To overcome this problem, acoustic telemetry, which is effective for underwater monitoring, is often used for studying fish behaviors, such as movement distance, route and patterns. In this study, in order to monitor the movement pattern of Squaliobarbus curriculus (family Cyprinidae), we used acoustic telemetry and identified the home range and movement distances. A total of nine individuals were released at two different locations: one is at the estuary barrage (Sc1~3) and the other is at the lower part of Baekjae Weir (Sc4~9), located in Geum River. Approximately, a 70 km section from the estuary barrage was investigated. Fish, which were released at the estuary barrage, utilized up to 12.7 km upstream as home range from the release site. At the lower part of Baekjae Weir, most of the fish moved and stayed within a 7.2 km downstream area, except for Sc6, which moved 53.4 km (linear maximum distance from release site) downstream from the release site. Relatively small sized fish (Sc7~9) did not show any movement. Accumulated movement distance significantly correlated with the standard length of S. curriculus ($r_s$=0.715, p=0.03). Moreover, the standard length of moving fish was significantly larger than that of not moving fish (Mann-Whitney U test, p=0.024). Therefore, the movement distance of S. curriculus has been correlated with fish size; movement distance was increased with the standard fish length. Although the sample size of monitored fish was small, various meaningful data were collected by acoustic telemetry. Consequently, this technique could be a method available for effectively monitoring the behavior and ecology of native Korean and endemic species.