• Title/Summary/Keyword: Underwater Acoustic Measurement

Search Result 89, Processing Time 0.026 seconds

Analysis of acoustic scattering characteristics of an aluminum spherical shell with different internal fluids and classification using pseudo Wigner-Ville distribution (구형 알루미늄 쉘 내부의 충전 유체에 따른 수중 음향 산란 특성 분석 및 유사 위그너-빌 분포를 이용한 식별 기법 연구)

  • Choo, Yeon-Seong;Byun, Sung-Hoon;Kim, Sea-Moon;Lee, Keunhwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.549-557
    • /
    • 2019
  • The acoustical scattering characteristics of a target are influenced by the material properties and structural characteristics of the target, which are critical information for acoustic detection and identification of underwater target. In particular, for thin elastic target, unique scattered signals are generated around the target by the Lamb wave. In this paper, the results of scattered signal measurement of aluminum spherical shell in the water tank using the stepped frequency sweep sine signal are presented. In particular, the scattering of the water-filled aluminum spherical shell is compared with that of the air-filled one both theoretically and experimentally. The difference of the scattered signals are analyzed using the pseudo Wigner-Ville distribution in terms of average frequency, frequency distribution, and energy of the scattered signal. The result shows that all observed parameters increased when the aluminum sphere was water-filled, and it is well matched to the theoretical expectation.

Bistatic Scattering from a Hemi-Spherically Capped Cylinder

  • Park, Sang-Hyun;La, Hyoung-Sul;Cho, Sung-Ho;Oh, Taek-Hwan;Kim, Young-Shin;Lee, Chang-Won;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3E
    • /
    • pp.115-122
    • /
    • 2006
  • The bistatic scattering of an incident wave by a hemi-spherically capped cylinder is of particular interest because it has rarely been studied until the present day. The configuration of a hemi-spherically capped cylinder is similar to naval underwater weapons (submarines, mines, torpedos, etc.), but which is not exactly the same. This paper describes a novel laboratory experiment aimed at direct measurement of bistatic scattering by a hemi-spherically capped cylinder. Bistatic scattering by a hemi-spherically capped cylinder was measured in an acoustic water tank (5m long, 5m wide, 5m deep) using a high frequency projector (120kHz) and hydrophone. Measurements of monostatic scattering were also made under the same conditions. The bistatic scattering pattern by a hemi-spherically capped cylinder was measured against the incident angles $(0^{\circ},\;15^{\circ},\;20^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;90^{\circ})$ in order to verify various scattering pattern characteristics by the change of incident angle. The results indicate that the bistatic scattering TS at a wide scattering angle is much stronger than the mono static scattering TS. In bistatic scattering, the forward scattering TS is significantly stronger than the backward scattering TS, and the forward scattering pattern is also broader. In case of seven incident angles, the maximum value of forward scattering TS is about 14dB stronger than that of backward scattering TS. It is also found that forward scattering varies with the incident angle of sound to a much less extent than backscattering, and it is not seriously affected by the incident angle. These features could be the advantages of using forward scattering for detecting underwater targets at long range and increasing detection area and probability.

Propagation Loss Measurement of Underwater Sound Wave using Narrow Band Acoustic Signal (협대역 음향신호를 이용한 수중음파의 전파손실 측정)

  • Na, Young-Nam;Shim, Tae-Bo;Choi, Jin-Hyeok;Chang, Duck-Hong;Kim, Seong-Il;Han, Jeong-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.5-15
    • /
    • 1994
  • In order to examine the propagation loss associated with water depth and bottom sediment type, an acoustic experiment was conducted in the Southeast Sea of Korea. A sound source was towed along the pre-defined tracks in about 5kts and the signal was simultaneously received at three bottom-moored hydrophones. The propagation loss of sound wave traveling along the isodepth was compared with that crossing the isodepth. The former case shows, in general, less loss than the latter. This trend is stronger as the distance between a source and a receiver increases. When sound wave propagates across the isodepth, we also find that the propagation loss is influenced by the upsloping and downslopoing conditions of wave propagtion. In general, the propagation loss under downsloping condition is smaller than that of upsloping condition, and the differences are as large as 10dB in some cases. However, little difference are found in the propagation loss depending on the bottom types : gravelly sand and sand-silt-clay. Meanwhile, the optimum propagation frequencies are found within range of 130-255Hz.

  • PDF

Analysis and Measurement techniques for Propeller Cavitation induced Underwater Acoustic Signature (추진기 캐비테이션 유기 수중 음향의 측정 및 분석)

  • SEO Jongsoo;Han Jaemoon;Lee Kyungjun;Jung Jaekwon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.443-446
    • /
    • 2004
  • 추진기에 의한 소음은 선형 특성에 의한 반류 분포, 추진기 재질 및 유체 연동 등 다양한 주변 인자들에 의해 발생하여, 민수용 선박의 경우는 과도한 추진기 수중 방사 소음으로 해양 생태계 교란 및 선박 거주구역 내 과대 소음 형성의 주 요인이 된다. 더구나, 군사용 함정의 경우에는 추진기 유기 소음은 수중 방사소음의 형태로 전파되어 함정/무기 자체에 탑재된 음향센서의 기능을 저하시키는 영향을 줄 뿐 아니라, 원거리까지 전파되는 수중소음으로 인해 치명적인 자기 노출이 되어 적 함정에 의한 피탐 거리 증대라는 전술적 취약점을 초래하는 중요한 요소이다. 본 발표는 삼성 공동수조(SCAT)에서 이루어지는 추진기 유기 소음 측정에 대한 기술적 사항과 모형선-추진기 수조 시험을 통해 구해진 추진기 유기음향과 이론 및 경험식을 토대로 계산된 추진기 소음의 정량/정성적 비교를 통해, 추진기 설계 단계에서 소음수준 예측 도구로의 활용 가능성을 제시하였다.

  • PDF

Cavitation Noise Detection Method using Continuous Wavelet Transform and DEMON Signal Processing (연속 웨이브렛 변환 및 데몬 신호처리를 이용한 캐비테이션 소음 검출 방법)

  • Lee, Hee-chang;Kim, Tae-hyeong;Sohn, Kwon;Lee, Phil-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • Cavitation is a phenomenon caused by vapour cavities that is produced in rapid pressure changes. When the cavitation happened, the sound pressure level of a underwater radiated noise is increased rapidly. As a result, it can increase the probability of the identification or classification of a our warship's acoustic signature by an enemy ship. However, there is a problem that it is hard to precisely detect the occurrence of a cavitation noise. Therefore, this paper presents recent improvements in terms of the cavitation noise measurement by using continuous wavelet transform and DEMON(Detection of Envelope Modulation on Noise) signal processing. Then, we present that the suggested scheme is more suitable for detecting the cavitation than existing algorithms.

Study on noise prediction of non-cavitating underwater propeller with hull-appendages effect (선체-부가물 영향을 고려한 비공동 수중추진기의 소음예측 연구)

  • Choi, Jihun;Seol, Hanshin;Park, Ilryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.247-255
    • /
    • 2019
  • In this study, to predict the noise of a submarine propeller which is going to become bigger and faster, the non - cavitating propeller noise was predicted based on the numerical analysis which considering the interaction of the hull - appendages - propeller. In order to predict the radiated noise of the propeller, the flow field for the entire region of hull-appendages-propeller was computed by CFD (Computational Fluid Dynamics). And the noise for the thickness noise and the load noise was numerically predicted using FW-H (Ffwocs Williams-Hawkings) acoustic analogy. Numerical noise prediction results were verified by model tests and showed good agreement with the measurement results in predicting total noise level and low frequency noise.

Low-noise Design Method of Small-size Underwater Acoustic System and Module (초소형 수중 음향 시스템 모듈의 저잡음 설계 방법)

  • Lee, Dong-Ho;Shin, Young-San;Song, Jin-Ho;Wee, Jae-Kyung;Lee, Jeong-Min;Seol, Jae-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.309-316
    • /
    • 2012
  • This paper suggest configuration method of small-size system and design method of module using multi power. In particular module designed to focus on PDN(Power Distribution Network) and filter configuration method to improve the characteristics of noise sensitive analog IC. For the prevention of high-voltage noise, manufactured module is used the ground-isolated technique and via stitching, and is connected grounds with a series of filters. In this paper, so we analyzed PDN structure through the simulation using lumped modeling and confirmed through measurement. Simulation results, when connecting 4.7uH inductor, we made certain that noise of -7dB decreases much more than when it did not. And it was confirmed 12% less than Background Noise.

Numerical Study on Cavitation Flow and Noise in the Flow Around a Clark-Y Hydrofoil (Clark-Y 수중익형 주변 공동 현상에 의한 유동장과 소음 예측에 대한 수치적 연구)

  • Ku, Garam;Cheong, Cheolung;Kim, Sanghyeon;Ha, Cong-Tu;Park, Warn-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Because the cavitation flow driven by an underwater propeller corrodes the materials around it and generates a high level of noise, it has become an important topic in engineering research. In this study, computational fluid dynamics techniques are applied to simulate cavitation flow, and the noise in the flow is predicted by applying the acoustic analogy to the predicted flow. The predicted results are compared with measurement results and other predictions in terms of surface pressure distribution and the temporal variation in liquid volume fraction. The predicted results are found to be in good agreement with the measured results. The source of the noise attributed to the time rate of change in the liquid volume fraction around the hydrofoil is modeled as a monopole source, and the source of the noise due to unsteady pressure perturbations on the hydrofoil surface is modeled as a dipole source. Then the predicted noise results are analyzed in terms of directivity and SPL spectrum. The noise caused by unsteady pressure perturbations was dominant in the entire frequency range considered in the study.

Measurements of mid-frequency transmission loss in shallow waters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model (동해 천해환경에서 측정된 중주파수 전달손실 측정: Rayleigh 및 HFBL 모델과의 비교)

  • Lee, Dae Hyeok;Oh, Raegeun;Choi, Jee Woong;Kim, Seongil;Kwon, Hyuckjong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.297-303
    • /
    • 2021
  • When sound waves propagate over long distances in shallow water, measured transmission loss is greater than predicted one using underwater acoustic model with the Rayleigh reflection model due to inhomogeneity of the bottom. Accordingly, the US Navy predicts sound wave propagation by applying the empirical formula-based High Frequency Bottom Loss (HFBL) model. In this study, the measurement and analysis of transmission loss was conducted using mid-frequency (2.3 kHz, 3 kHz) in the shallow water of the East Sea in summer. BELLHOP eigenray tracing output shows that only sound waves with lower grazing angle than the critical angle propagate long distances for several kilometers or more, and the difference between the predicted transmission loss based on the Rayleigh reflection model and the measured transmission loss tend to increase along the propagation range. By comparing the Rayleigh reflection model and the HFBL model at the high grazing angle region, the bottom province, the input value of the HFBL model, is estimated and BELLHOP transmission loss with HFBL model is compared to measured transmission loss. As a result, it agrees well with the measurements of transmission loss.