• Title/Summary/Keyword: Underwater Acoustic Communications

Search Result 99, Processing Time 0.028 seconds

Experimental Results of an Underwater Acoustic Communications Using BFSK Modulation (BFSK 변조를 이용한 수중 음향 통신의 실험적 고찰)

  • 이외형;김기만
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.418-424
    • /
    • 2003
  • In this paper we analyzed the performance of data transmission using BFSK modulation. The system performances were evaluated by the experiments in water tank. As a result we showed the influences of reverberation due to the multipath. In order to simplify the experiment procedure the channel coding etc. were omitted. The experimental result shows that the maximum transmission data rate in used water tank is about 800 bps. We also verified that the reverberation effect m reduced using a deconvolution with a measured channel impulse response. This method improved the bit rate by about 100 bps than simple noncoherent demodulator at bit error rate of 10/sup -3/.

수중 음향 센서 네트워크에서의 매체 접속 제어 프로토콜 연구 동향

  • Seo, Bo-Min;Jo, Ho-Sin
    • Information and Communications Magazine
    • /
    • v.33 no.8
    • /
    • pp.71-81
    • /
    • 2016
  • 본 논문에서는 수중 통신을 위한 매체 접속 제어(Medium Access Control: MAC) 프로토콜에 대한 연구 동향을 소개한다. 먼저 수중 음향 센서 네트워크(Underwater Acoustic Sensor Network: UWASN)와 수중 음향 채널의 특성을 소개하고 이로 인한 수중 MAC 프로토콜 설계 시 고려 사항에 대해 정리한다. 본 논문에서는 수중 MAC 프로토콜을 크게 비경쟁(contention-free) 기반과 경쟁 기반(contention-based) 프로토콜로 나누어 각각의 대표적인 프로토콜들에 대한 핵심 동작 원리에 대해 설명한다. 마지막으로 MAC 프로토콜을 실제 해양 환경에 구현하기 위한 고려 사항에 대해 정리한다.

Development of a Gateway System Between Underwater and Land Network and Real-Sea performance Test (수중-육상 네트워크 연계용 게이트웨이 부이시스템 개발 및 실 해역 성능 검증)

  • Lee, Jeong-Hee;Park, Jong-Won;Park, Jin-Yeong;Seo, Su-Jin;Lim, Young-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1200-1207
    • /
    • 2015
  • A gateway buoy system connects a underwater network to a terrestrial network, which enables to efficiently monitor the underwater network on a land station. In this paper, we introduce an implemented gateway buoy system which relays gathered data from multiple underwater nodes to a land station in a real time. The gateway buoy hardware system is composed of a underwater acoustic modem system, a radio frequency modem system, and a gateway operating system. in additional, we have implemented a land operating program and a land monitoring program for gateway system and states of underwater network, respectively. We also perform real-sea experiments to verify the performance of the gateway buoy system which real-time monitors underwater network states and gateway system states.

Effect of Interference in CSMA/CA Based MAC Protocol for Underwater Network (CSMA/CA 기반 수중 통신망에서 간섭의 영향 연구)

  • Song, Min-je;Cho, Ho-shin;Jang, Youn-seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1631-1636
    • /
    • 2015
  • With the advance of wireless communication technology in terrestrial area, underwater communication is also evolving very fast from a simple point-to-point transmission to an elaborate networked communications. Underwater acoustic channel has quite different features comparing with the terrestrial radio channel in terms of propagation delay, Doppler shift, multipath, and path loss. Thus, existing technologies developed for terrestrial communication might not work properly in underwater channel. Especially medium access control (MAC) protocols which highly depend on propagation phenomenon should be newly designed for underwater network. CSMA/CA has drawn lots of attention as a candidate of underwater MAC protocol, since it is able to resolve a packet collision and the hidden node problem. However, a received signal could be degraded by the interferences from the nodes locating outside the receiver's propagation radius. In this paper, we study the effects of interference on the CSMA/CA based underwater network. We derived the SNR with the interference using the sonar equation and analyzed the degradation of the RTS/CTS effects. These results are compared with the terrestrial results to understand the differences. Finally we summarized the design considerations in CSMA/CA based underwater network.

An Adaptive Decision Feedback Equalizer for Underwater Acoustic Communications (수중음향통신을 위한 적응 결정궤환 등화기)

  • Choi, Young-Chol;Park, Jong-Won;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.645-651
    • /
    • 2009
  • In this paper, we present bit error rate(BER) performance of an adaptive decision feedback equalizer(DFE) using experimental data. The experiment was performed at the shore of Geoje in November 2007. The BER of the adaptive DFE whose tap weight is updated by RLS is described with change of feedforward filter length, feedback filter length, training sequence length, and delay, which shows that the uncoded average BER is $4{\times}10^2\;and\;1.5{\times}10^{-2}$ with transmission range of 9.7km and 4km, respectively. The BER of the adaptive DFE can be lower than 10-3 by a forward error correction code and therefore the adaptive DFE may be a good candidate for a high speed AUV communications since the volume and weight of the underwater acoustic modem should be small because of the restricted space and power in the battery-operated AUV.

Performance Analysis of LDPC code with Channel Estimation in Underwater Communication (수중통신 채널에서 채널 추정 오차에 따른 LDPC 부호 성능분석)

  • Kim, Nam-Soo;Jung, Ji-Won;Kim, Ki-Man;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2295-2303
    • /
    • 2009
  • Underwater acoustic(UWA) communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of UWA channel causes signal distortion and error floor. In this paper, we proposed the compensation method of multipath effect using the impulse response of the UWA channel and then analysis the performance of channel coding such as LDPC code, concatenate code. Also we analysed the time-delay errors and estimated amplitude errors of estimated channel information and its affection on the performance. As shown in simulation results, the performance of proposed compensation method is better than the performance of conventional method.

On the System Modeling and Capacity Scaling Law in Underwater Ad Hoc Networks (수중 애드 혹 네트워크에서의 시스템 모델링 및 용량 스케일링 법칙에 대하여)

  • Shin, Won-Yong;Kim, A-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.422-428
    • /
    • 2011
  • In this paper, we introduce system and channel modeling for an underwater ad hoc acoustic network with n regularly located nodes, and then analyze capacity scaling laws based on the model. A narrow-band model is assumed where the carrier frequency is allowed to scale as a function of n. In the network, we characterize in attenuation parameter that depends on the frequency scaling as well as the transmission distance. A cut-set upper bound on the throughput scaling is then derived in extended networks having unit node density. Our result indicates that the upper bound is inversely proportional to the attenuation parameter, thus resulting in a power-limited network. Furthermore, we describe an achievable scheme based on the simple nearest-neighbor multi-hop (MH) transmission. It is shown under extended networks that the MH scheme is order-optimal for all the operating regimes expressed as functions of the attenuation parameter.

A Study on Performance Prediction Methods for Multi-Band Underwater Communication (수중 통신에서 다중 밴드 성능 예측 기법 연구 )

  • Ji-Won Jung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.61-68
    • /
    • 2023
  • Multi-band method which allocate the same data to different frequency bands, improves performance by compensating Doppler spreading and selective fading in underwater communications. The drawback of multi-band configuration may have worse performance because performance degradation in a particular band affects the output from the entire bands. It is very important to find which band is superior or inferior band in order to improve performance. Therefore this paper analyzes performance prediction algorithms of each band. This paper proposes three kinds of prediction methods. Through the ocean tests, this paper confirms utilizing the preamble error rates is most efficient algorithm among of them.

A study on the short-range underwater communication using visible LEDs (근거리 수중통신을 위한 가시광 LED 적용에 관한 연구)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.425-430
    • /
    • 2013
  • Robust and high speed underwater communication is severely limited when compared to communications in terrestial. In free space, RF communication operates over long distances at high data rates. However, the obstacle in seawater is the severe attenuation due to the conducting nature. Acoustic modems are capable of long range communication up to several tens of kilometers, but it has low data-rate, high power consumption and low propagation speed. An alternative means of underwater communication is based on optics, wherein high data rates are possible. In this paper, the characteristics of underwater channel in the range of visible wavelength is investigated. And the possibility of optical wireless communication in underwater is also described. The LED-based transceiver and CMOS sensor module are integrated in the system, and the performance of image transmission was demonstrated.

Photo-Transistors Based on Bulk-Heterojunction Organic Semiconductors for Underwater Visible-Light Communications (가시광 수중 무선통신을 위한 이종접합 유기물 반도체 기반 고감도 포토트랜지스터 연구)

  • Jeong-Min Lee;Sung Yong Seo;Young Soo Lim;Kang-Jun Baeg
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.143-150
    • /
    • 2023
  • Underwater wireless communication is a challenging issue for realizing the smart aqua-farm and various marine activities for exploring the ocean and environmental monitoring. In comparison to acoustic and radio frequency technologies, the visible light communication is the most promising method to transmit data with a higher speed in complex underwater environments. To send data at a speedier rate, high-performance photodetectors are essentially required to receive blue and/or cyan-blue light that are transmitted from the light sources in a light-fidelity (Li-Fi) system. Here, we fabricated high-performance organic phototransistors (OPTs) based on P-type donor polymer (PTO2) and N-type acceptor small molecule (IT-4F) blend semiconductors. Bulk-heterojunction (BHJ) PTO2:IT-4F photo-active layer has a broad absorption spectrum in the range of 450~550 nm wavelength. Solution-processed OPTs showed a high photo-responsivity >1,000 mA/W, a large photo-sensitivity >103, a fast response time, and reproducible light-On/Off switching characteristics even under a weak incident light. BHJ organic semiconductors absorbed photons and generated excitons, and efficiently dissociated to electron and hole carriers at the donor-acceptor interface. Printed and flexible OPTs can be widely used as Li-Fi receivers and image sensors for underwater communication and underwater internet of things (UIoTs).