• 제목/요약/키워드: Underground temperature

검색결과 614건 처리시간 0.025초

KBS-3 개념에 따른 포화된 암반내 사용후핵연료 처분을 위한 열, 수리, 역학적 특성 해석 (Thermal, Hydraulic and Mechanical Analysis for Disposal of Spent Nuclear Fuel in Saturated Rock Mass in the KBS-3 Concept.)

  • 장근무;황용수;김선훈
    • 터널과지하공간
    • /
    • 제7권1호
    • /
    • pp.39-50
    • /
    • 1997
  • Reference concepts for the disposal of spent nuclear fuel and the current status of underground rock laboratory were studied. An analysis to simulate the deep disposal of spent nuclear fuel in saturated rock mass was conducted. Main input parameters for numerical study were determined based on the KBS-3 concept. A series of results showed that the temperature distribution around a cavern reached the maximum value at about 10 years after the emplacement of spent fuel. The maximum temperature at the surface of canister was more than about 12$0^{\circ}C$ at about 4 years. This temperature was not much higher than the temperature criteria to meet the performance criteria of an artificial barrier in the KBS-3 concept. The maximum upward displacement due to the heat generation of spent fuel was about 0.9cm at about 10 years after the emplacement of spent fuel. It turned out that the vertical displacement became smaller with the decrease in heat generation of a canister. The quantity of groundwater inflow into a disposal tunnel increased by about 1.6 times at 20 years after the emplacement of spent fuel with the increase of pore pressure around a cavern.

  • PDF

온실(溫室) 난방(暖房)을 위한 태양열(太陽熱)-지하(地下) 잠열(潛熱) 축열(蓄熱) 시스템 개발(開發) (Development of Solar Energy-Underground Latent Heat Storage System for Greenhouse Heating)

  • 송현갑;류영선
    • Journal of Biosystems Engineering
    • /
    • 제19권3호
    • /
    • pp.211-221
    • /
    • 1994
  • In this study, to maximize the solar energy utilization for greenhouse heating during the winter season, solar energy-underground latent heat storage system was constructed, and the thermal performance of the system has been analyzed to obtain the basic data for realization of greenhouse solar heating system. The results are summarized as follows. 1. $Na_2SO_4{\cdot}10H_20$ was selected as a latent heat storage material, its physical properties were stabilized and the phase change temperature was controlled at $13{\sim}15^{\circ}C$. 2. Solar radiation of winter season was the lowest value in December, and Jinju area was the highest and the lowest value was shown in Jeju area. 3. The minimum inner air temperature of greenhouse with latent heat storage system(LHSS) was $7.0{\sim}7.5^{\circ}C$ higher than that of greenhouse without LHSS and was $7.0{\sim}11.2^{\circ}C$ higher than the minimum ambient air temperature. 4. Greenhouse heating effect of latent heat storage system was getting higher according to the increase of solar radiation and was not concerned with the variation of minimum ambient air temperature. 5. The relative humidity of greenhouse with latent heat storage system was varied from 50 to 85%, but that of greenhouse without LHSS was varied from 30 to 93%. 6. The heating cost of greenhouse with solar energy-latent heat storage system was about 24% of that with the kerosene heating system.

  • PDF

매설용 전기 발열 매시의 융설 효과에 대한 현장 적용성 연구 (A Study on Field Applicability of Underground Electric Heating Mesh)

  • 서영찬;서병석;송중곤;조남현
    • 한국도로학회논문집
    • /
    • 제15권2호
    • /
    • pp.19-27
    • /
    • 2013
  • PURPOSES : This study aims to investigate the snow-melt effects of an underground electric heater's snow-melt system via a field performance test, for evaluating the suitability of the system for use on a concrete pavement. The study also investigates the effectiveness of dynamic measures for clearing snow after snowfall events. METHODS : In order to check the field applicability, in November 2010, specimens were prepared from materials used for constructing concrete pavements, and underground electric heating meshes (HOT-mesh) were buried at depths of 50 mm and 100 mm at the site of the Incheon International Airport Construction Research Institute. Further, an automatic heating control system, including a motion sensor and pavement-temperature-controlled sensor, were installed at the site; the former sensor was intended for determining snow-melt effects of the heating control system for different snowfall intensities. Pavement snow-melt effects on snowy days from December 2010 to January 2011 were examined by managing the electric heating meshes and the heating control system. In addition, data on pavement temperature changes resulting from the use of the heating meshes and heating control system and on the dependence of the correlation between the outdoor air temperature and the time taken for the required temperature rise on the depth of the heating meshes were collected and analyzed. RESULTS : The effects of the heating control system's preheat temperature and the hot meshes buried at depths of 50 mm and 100 mm on the melting of snow for snowfalls of different intensities have been verified. From the study of the time taken for the specimen's surface temperature to increase from the preheat temperature ($0^{\circ}C$) to the reference temperature ($5{\sim}8^{\circ}C$) for different snowfall intensities, the correlation between the burial depth and outdoor air temperature has been determined to be as follows: Time=15.10+1.141Depth-6.465Temp CONCLUSIONS : The following measures are suggested. For the effective use of the electric heating mesh, it should be located under a slab it may be put to practical use by positioning it under a slab. From the management aspect, the heating control system should be adjusted according to weather conditions, that is, the snowfall intensity.

해외 지하 데이터센터의 현황과 동향 분석 (Status and Trend of Foreign Underground Data Centers)

  • 이철호;최순욱;강태호;장수호
    • 터널과지하공간
    • /
    • 제29권1호
    • /
    • pp.52-63
    • /
    • 2019
  • 국가의 금융 정보나 의료 정보와 같이 국가 차원에서 안정성을 확보하고 주요하게 다뤄지는 자료는 안전한 보관 및 관리되어야 하므로 이를 위해서는 벙커형 지하 데이터센터를 건설하는 것이 요구된다. 특히 국가 차원의 데이터센터는 지진과 같은 외력에 의해 데이터센터의 기능이 마비되는 것을 방지하는 기능과 이를 충분히 관리할 요건을 갖추어야 할 것이다. 따라서 자연 위협이나 인적 위협에 대한 데이터를 안전하게 보관하고 지하 공간이 갖는 장점을 활용하여 각 국가에서는 지하 데이터센터를 건설하고 있는 추세이다. 본 보고에서는 이러한 세계적인 데이터센터 현황과 동향을 분석하고 우리나라가 진행되어야 할 전략에 대해 검토하였다.

선로부 TES를 갖는 지하철 역사내 화재의 수치 해석 (A NUMERICAL STUDY ON THE FIRE EMERGENCY IN THE UNDERGROUND STATION WITH TRACKWAY EXHAUST SYSTEM (TES))

  • 박종택;원찬식;허남건
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.26-31
    • /
    • 2006
  • In the present study, a numerical simulation of the subway carriage fire is performed to determine the more effective operation of Trackway Exhaust System(TES) in underground stations. The four types of possible TES operation (OSUS, OSUE, OEUS and OEUE) is simulated and compared their removal capability of smoke and hot temperature for the carriage fire of 2MW. From the results, the distribution of temperature and smoke concentration is more dependent on the operation of fans located at upper side of the platform than those at lower side. It is also found from the results that for more efficient smoke control, the fans at upper side of the platform should be operated as an exhaust system. Whereas the fans at lower side can be operated as a supply system to aid upper exhaust fans.

지하 생활공간 환경제어 설비 통합관리 기술 (Integrated management technology of environmental control facilities underground living space)

  • 강현근;김태한;전진한;이승홍
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.95-98
    • /
    • 2008
  • A power line communications, power, the outgoing line is a means of communication. DC 12 volt power lines in the system over the 2-wire control signals with the power to send the cargo configuration, and, in the basement living space, temperature, humidity, dust, CO2 sensors, and through the cooperation of the real-time detection and valves of the appropriate amount of wind, fan was designed to control. By the system's ability to communicate and control the room temperature or the status of amount of wind sent to the central system to transmit and receive signals to the center of the future, the ability to control the company said. In addition, the system HMI (Human Machine Interface) terminal by the direct control and if necessary personal portable devices to communicate with the living conditions of the underground environment in the best state that the purpose is to build.

  • PDF

화재피해를 입은 RC 슬래브의 재하실험에 관한 연구 (A Study on the loading test for of slab by Fire damaged)

  • 이규민;강승구;김동준;권영진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.50-51
    • /
    • 2013
  • In case of Korea, it goes frequently that underground parks has been burned. Based on standard temperature time curve(ISO-834), gerber, walls, slab of structures are constructed. However, Standard temperature time Curve is not considered that buildings are affected by vehicle fire. that is why it has the hazard that makes building reinforcement feeble. Based on the result that got from vehicle experiment before, we made four RC slab in this experiment and set the fire severity. according to the loading experiment after heating, we measured the effects that makes reinforcement and shape changes. Furthermore, we examined the safty of the structure by comparing before and after heating.

  • PDF

냉동저장 공동 주변의 온도분포 예측을 위한 해석해 및 수치모델 적용에 관한 연구 (Analytical and Numerical Model Study to Predict the Temperature Distribution Around an Underground Food Cold Storage Pilot Cavern)

  • 이대혁;김호영
    • 터널과지하공간
    • /
    • 제12권3호
    • /
    • pp.142-151
    • /
    • 2002
  • 대전 식품냉동저장창고 파일럿 공동주위의 거리에 따른 비정상상태의 온도 분포를 산정하기 위해 Claesson(2001)의 해석해 및 Dirichlet과 Neuman 내부 경계조건을 갖는 수치모델들을 검토하였다. 온도 강하 단계동안 일정 표면 온도 경계조건에 기초하고 있는 Claesson의 해석해를 활용한 결과, 실제 암반에서의 온도 계측결과를 오차 평균 0.89$^{\circ}C$ 수준으로서 비교적 정확히 예측할 수 있었는데, $0^{\circ}C$근처의 실험실 암석 열물성을 입력하였고 현지 암반 조건을 표현하기 위한 특별한 물성 보정을 하지 않았다. 내부 공동 암반 벽면을 통한 열유속을 갖는 수치해석의 경우, 대류 열전달계수와 공동 내부 온도가 냉각시간에 따라 변화하기 때문에 경계조건을 가하기 어려운 단점을 극복하기 위해 새로운 경계조건 설정 기법을 제안하였다. 그 결과 오차 평균 1.58$^{\circ}C$의 수준으로서 온도 계측치와 부합하였다. 또한 공동 벽면에서 고정 온도 조건을 갖는 수치해와 비교하였다. 마지막으로 Claesson의 해석해 및 다양한 내부 경계조건을 갖는 수치모델을 활용하여, 공동 주변의 온도 분포를 정확히 예측할 수 있는 일련의 해석 단계 프로그램을 제안하였다.

THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network

  • Kwon, Sangki;Lee, Changsoo
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.363-373
    • /
    • 2018
  • The evaluation of Thermo-Hydro-Mechanical (THM) coupling behavior is important for the development of underground space for various purposes. For a high-level radioactive waste repository excavated in a deep underground rock mass, the accurate prediction of the complex THM behavior is essential for the long-term safety and stability assessment. In order to develop reliable THM analysis techniques effectively, an international cooperation project, Development of Coupled models and their Validation against Experiments (DECOVALEX), was carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment that was conducted at Horonobe Underground Research Laboratory(URL) by Japan Atomic Energy Agency (JAEA), was modeled by the research teams from the participating countries. In this study, a THM coupling technique that combined TOUGH2 and FLAC3D was developed and applied to the THM analysis for the in situ experiment, in which rock, buffer, backfill, sand, and heater were installed. With the assistance of an artificial neural network, the boundary conditions for the experiment could be adequately implemented in the modeling. The thermal, hydraulic, and mechanical results from the modeling were compared with the measurements from the in situ THM experiment. The predicted buffer temperature from the THM modelling was about $10^{\circ}C$ higher than measurement near by the overpack. At the other locations far from the overpack, modelling predicted slightly lower temperature than measurement. Even though the magnitude of pressure from the modeling was different from the measurements, the general trends of the variation with time were found to be similar.

냉방설비 성능개선 및 에너지 절약을 위한 응결수 활용성 분석 (An analysis on the utility of congealing water to improve efficiency of the air cooling equipment and save energy)

  • 박근수;박영호;유정범
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.974-981
    • /
    • 2007
  • Seoul Metro has operated the air cooling equipment established in a machine room of a station building to improve our services focused on our customers who use Seoul Metro during the summer season. However, a new set of problems has arisen with the cooling tower to support a heat exchange of cooling water. One of them is loss of efficiency in the air conditioner. The leading cause of this problem is that we use an underground type of the cooling tower. As the machine room of a station building is located in the underground of inner city because of the nature of the subway, it is difficult to establish the cooling tower on the ground. The underground structure of the No. $1{\sim}4$ subway line is unsuitable for the location requirements of the underground type of the one because it has a limited space to set up the air cooling equipment, for example, the cooling tower and a ventilating opening. As a result of such an unfavorable condition, the cooling tower doesn't work efficiently and the warmth of cooling water because of insufficiency of a heat exchange and a refrigerator's technical obstacle such as a high-temperature and a high-pressure has arisen. Accordingly, the efficiency of the air conditioning is getting lower and lower. Another problem is too wasteful with water. Each station uses the water over 30 tons every day with waterworks to replenish the cooling tower such as a evaporation, a scattering and a distribution of water. Nevertheless, the more an air conditioner increase, the more the use of water supply increase. For this reason, we can't help wasting an enormous amount of water and discharging the congelation of a low temperature(about $15^{\circ}C$) occurred in a heat exchanger inside an air conditioner. The purpose of this study is to analyze the utility of congealing water to improve efficiency of the air cooling equipment and save energy as a supplementary water for the cooling tower.

  • PDF