• Title/Summary/Keyword: Underground railway tunnel

Search Result 132, Processing Time 0.028 seconds

On the optimum design of reinforcement systems for old masonry railway tunnels

  • Ghyasvand, Soheil;Fahimifar, Ahamd;Nejad, Fereidoon Moghadas
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.145-155
    • /
    • 2022
  • Safety is a most important parameters in underground railway transportation; Also stability of underground tunnel is very important in tunneling engineering. Design of a reliable support system requires an evaluation of both ground demand and support capacity. Iran's traditional railway tunnels are mainly supported with masonry structures or unsupported in high quality rock masses. A decrease in rock mass quality due to changes in groundwater regime creep and fatigue in rock and similar phenomena causes tunnel safety to decrease during time. The case study is an old tunnel in Iran, called "Keshvar"; it is more than 50 years old railway organization. In operating this Tunnel, until the several problems came up based on stability and leaking water. The goal of study is evaluation of the various reinforcement systems for supporting of the tunnel. The optimal selection of the reinforcement system is examined using TOPSIS Fuzzy method in light of the looming and available uncertainties. Several factors such as; the tunnel span, maintenance, drainage, sealing, ventilation, cost and safety were based to choose the method and system of designing. Therefore, by identifying these parameters, an optimal reinforcement system was selected and introduced. Based on optimization system for analysis, it is revealed that the systematic rock bolts and shotcrete protection had a most appropriate result for these kind of tunnel in Iran.

Field Tests Investigating the Ground Borne Vibration Induced by Underground Railway Tunnel (터널 내 열차주행으로 인한 지반진동 현장측정시험)

  • Ahn, Sung-Kwon;Bang, Eun-Seok;Lee, Bae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.208-213
    • /
    • 2010
  • This paper describes the instruments used, and the test procedures adopted, and the findings obtained from a research project aiming to investigate, via full-scale field tests, the ground borne vibration caused by underground railway tunnel constructed in hard rock. The ground borne vibration induced by high-speed trains (i.e. the Korea Train eXpress (KTX) services) with a speed of approximately 200km/hr was measured inside the borehole constructed in the close proximity to the KTX tunnel using 3-component borehole seismographs in order to investigate the wave propagation of ground borne vibration. This paper also discusses the limitation associated with the current practice of measuring ground borne vibration using conventional borehole seismograph.

A study on the estimation of safety in long railway tunnel (장대 철도터널에서의 방재 안전성 평가에 관한 연구)

  • Kim, Young-Geun;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.287-298
    • /
    • 2007
  • Recently, as the construction of new railway and the relocation of existing line increase, tunnel structures get longer. The railway fire accidents in long tunnel bring large damages of human life and disaster. The interest on safety in long tunnel has been growing and the safety standard for long tunnels is tightening. For that reason, at the planning stage of a long tunnel, the optimum design of safety facility for minimizing the risks and satisfying the safety standard is required. For the reasonable design of a long railway tunnel considering high safety, qualitative estimation for tunnel safely is required. In this study, QRA (Quantitative Risk Analysis) technique is applied to design of a long railway tunnel for assuring the safety function and estimating the risk of safety. The case study for safety design was carried out to verify the QRA technique for two railway tunnels.

  • PDF

Development of a 3D Laser Scanner Based Tunnel Scanner (3D 레이저 스캐너 기반의 터널스캐너 개발)

  • SaGong, Myung;Moon, Chul-Yi;Lee, Jun-S.;Hwang, Seon-Keun;Kim, Byung-Hong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.377-388
    • /
    • 2006
  • Most structures experience deterioration after construction. A routine inspection and maintenance must be accomplished for the efficient use of the structures. The routine inspection will play a major role on the determination of maintenance period and method. This study aims development of an automated tunnel inspection system based upon a 3 dimensional laser scanner. As for the initial stage of the project, a prototype tunnel scanner has been developed. The development of a tunnel scanner prototype follows comparison between image scanning and laser scanning system and investigation on the applicability and adaptivity of the scanners to the railway tunnel scanner. The applicability of the laser scanner on the railway tunnel has been confirmed from the pilot test by using commercialized general purpose close range laser scanner and applicability of a laser scanner as a railway tunnel scanner has been checked. From the result, a prototype of railway tunnel scanner has been built and the calibration of the system was carried out. Finally the developed tunnel laser scanner has been applied to different shapes and sizes of tunnels in use.

The Characteristics of Ventilation in Railway Tunnel (철도터널의 환기특성에 관한 연구)

  • Yoo, Ji-oh;Shin, Hyun-Jun;Lee, Ho-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.22-31
    • /
    • 2000
  • This study aimed at investigating the influence of tunnel length and area, drag coefficient, train velocity on the characteristics of ventilation in railway tunnel. The modified Subway Environment Simulation(SES) computer program has been used to calculate the flow velocity and longitudinal emission concentration with various condition. According to a series of numerical simulation, the influence of various parameter on maximum air flow velocity, purging length and emission concentration are estimated.

  • PDF

Hard rock TBM project in Eastern Korea

  • Jee, Warren W.
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.33-41
    • /
    • 2008
  • The longest tunnel has been halted at Daekwanryung by the failure of the host country of the Winter Olympiad in 2014, but modern High-Power TBM will come to Korea to excavate these long tunnels to establish the better horizontal connection between the western and eastern countries to improve the strong powerful logistic strategy of Korean peninsula. Train operation provides a key function of air movements in a long underground tunnel, and heat generation from transit vehicles may account of the most heat release to the ventilation and emergency systems. This paper indicates the optimal fire suppress services and safety provision for the long railway tunnel which is designed twin tunnel with length 22km in Gangwon province of Korea. The design of the fire-fighting systems and emergency were prepared by the operation of the famous long-railway tunnels as well as the severe lessons from the real fires in domestic and overseas experiences. Designers should concentrate the optimal solution for passenger's safety at the emergency state when tunnel fires, train crush accidents, derailment, and etc. The optimal fire-extinguishing facilities for long railway tunnels are presented for better safety of the comfortable operation in this hard rock tunnel of eastern mountains side of Korea. Since year 1900, hard rock tunnel construction has been launched for railway tunnels in Korea, tunnels have been built for various purposes not only for infrastructure tunnels including roadway, railway, subway, and but also for water and power supply, for deposit food, waste, and oils etc. Most favorable railway tunnel system was discussed in details; twin tunnels, distance of cross passage, ventilation systems, for the comfortable train operations in the future.

  • PDF

A study on quantitative risk assessment for railway Tunnel fire (철도터널에서 차량화재시 정량적 위험도 평가에 관한 연구)

  • Yoo, Ji-Oh;Nam, Chang-Ho;Jo, Hyeong-Je;Kim, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2010
  • As we learned in Daegu subway fire accident, fire in the railway tunnel is prone to develop to large disaster due to the limitation of smoke control and smoke exhaust. In railway tunnel, in order to ensure fire safety, fire prevention and fighting systems are installed by quantitative risk assessment results. Therefore, in this research, developed the program to establish quantitative risk assessment and suggested quantitative safety assessment method including fire scenarios in railway tunnel, fire and evacuation analysis model, fatality estimate model and societal risk criteria. Moreover, this method applys to plan preventing disaster for Honam high speed railway tunnel. As results, we presented the proper distance of escape route and societal risk criteria.

A Study on Fire Resistance Character of a Tunnel and an Underground Structure (터널 및 지하구조물의 내화특성에 관한 연구)

  • Yoo, Sang-Gun;Kim, Jung-Joo;Park, Min-Yong;Kim, Eun-Kyum;Lee, Jun-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.194-200
    • /
    • 2010
  • Recently, a longitudinal tunnel construction has increased because of subway construction extension, geomorphological effect and the development of construction Technologies etc. When the fire occurs in a tunnel and an underground structure, the many damage of human life and the economic losses are caused. In Korea, fire resistance character study of a tunnel and an underground structure is proceeding. However, when a concrete is exposed to high temperature, study of load carrying capacity reduction and stability evaluation for spalling of a concrete is not enough. Therefore in this study, fire resistance character of a concrete evaluated according to time heating temperature curve(RABT and RWS) and a result compared on virtual fire accident in order to apply fire scenario. Also this study performed thermo-mechanical coupled analysis of a FEM-based numerical technique and estimated fire-induced damage of a tunnel and an underground structure.

Seismic fragility and risk assessment of an unsupported tunnel using incremental dynamic analysis (IDA)

  • Moayedifar, Arsham;Nejati, Hamid Reza;Goshtasbi, Kamran;Khosrotash, Mohammad
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.705-714
    • /
    • 2019
  • Seismic assessment of underground structures is one of the challenging problems in engineering design. This is because there are usually many sources of uncertainties in rocks and probable earthquake characteristics. Therefore, for decreasing of the uncertainties, seismic response of underground structures should be evaluated by sufficient number of earthquake records which is scarcely possible in common seismic assessment of underground structures. In the present study, a practical risk-based approach was performed for seismic risk assessment of an unsupported tunnel. For this purpose, Incremental Dynamic Analysis (IDA) was used to evaluate the seismic response of a tunnel in south-west railway of Iran and different analyses were conducted using 15 real records of earthquakes which were chosen from the PEER ground motion database. All of the selected records were scaled to different intensity levels (PGA=0.1-1.7 g) and applied to the numerical models. Based on the numerical modeling results, seismic fragility curves of the tunnel under study were derived from the IDA curves. In the next, seismic risk curve of the tunnel were determined by convolving the hazard and fragility curves. On the basis of the tunnel fragility curves, an earthquake with PGA equal to 0.35 g may lead to severe damage or collapse of the tunnel with only 3% probability and the probability of moderate damage to the tunnel is 12%.