• Title/Summary/Keyword: Underground power transmission cable

Search Result 182, Processing Time 0.03 seconds

Analysis of lightning overvoltage with unbalanced element in Underground Transmission Cable System (지중송전계통에서 불평형요소에 따른 뇌과전압 해석)

  • Kang, J.W.;Lee, D.I.;Kim, J.S.;Kim, Y.S.;Jung, C.K.;Lee, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.718-720
    • /
    • 2005
  • This paper analyses the transient phenomena against lightning surge on underground power cable systems. For analysis, several actual underground power cable systems are modeled using ATP. In lightning surge strokes, the various unbalanced conditions including the length of crossbonded lead, the breakdown of CCPU and distance unbalance are considered. This paper is expected to contribute the establishment of proper protection methods against transients on underground power cable systems.

  • PDF

A Study on the Heat Transfer Analysis based on Insulation Thickness Variation of Cable Splice Part (지중케이블 접속부의 절연층 두께변화에 따른 열해석 연구)

  • 최규식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.246-255
    • /
    • 1998
  • The cable cooling through installing the cooling pipe along the transmission cable becomes universal in foreign leading countries, especially in Japan, and, there are so many study results inside and outside of the country. However, the remarkable study result for cooling method of cable splice part is not achieved in spite of its importance. This paper is, therefore, carrys out detailed heat transfer analysis of existing 154kV underground cable-splice, depending on the insulation thickness variation when it is installed in manhole of tunnel whose temperature is maintained as $10^{\circ}C$ using refrigerator. This paper study also the cooling method of underground cable splice based on this result.

  • PDF

Effect of compact HTS superconduction power cable and investigation of its economical efficiency (콤팩트형 고온 초전도 전력 케이블의 도입 효과와 경제성 검토)

  • 최상봉;성기철;조전욱;정성환;김대경
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.108-111
    • /
    • 2001
  • This paper presents the possible application of a HTS superconducting power cable for transmitting electric power in metropolitan areas, reflecting its important distinction such as compactness for installation in underground ducts and considerably economical efficiency comparable to present underground cables. In this paper, we investigated characteristic and market scale compact HTS transmission cable which is possible to install in underground ducts. And reviewed its economical efficiency comparing to present existed CV cable from point of view such as cost for cable construction and duct or tunnel installation.

  • PDF

Pattern Analysis of the Defects within the Cable Insulation for UHV Underground Transmission Using Partial Discharge (부분방전을 이용한 초고압 지중 송전 절연 케이블 내부 결함의 패턴분석)

  • Park, Jae-Hwa;Lee, Gwang-Yeol;Chae, Seok;Oh, Young-Seok;Kim, Hak-Sung
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.175-179
    • /
    • 1998
  • The insulation of cable which used for Ultra-High Voltage(UHV) underground power transmission requires excellent insulation capability for high voltage. The typical insulation materials are used XLPE, EPR, etc, but insulation efficiency of these is affected by void or alien substances, existed at the inside of insulators. In this paper, the partial discharge patterns of the defects within insulation cable are observed and analyzed. In this test, void, fiber and metal inclusions which possibly exist in cables, are simulated and investigated the patterns of partial discharges for each models Also the relations between calculated field strength and the insulation breakdown voltage. The experiment shows distinct partial discharge patterns in accordance with the kinds of defects within Insulation cable.

  • PDF

Electric Field Distribution Simulation of the Cable Joint Materials (케이블 접속재료의 전계분포 시뮬레이션)

  • Kim, Hyung-Joo;Byun, Doo-Gyoon;Shin, Jong-Yeol;Lee, Duk-Jin;Lee, Chung-Ho;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.601-604
    • /
    • 2001
  • The insulation materials of cables used for underground power transmission requires a higher insulating capability. and the most popular method to examine the cable is partial discharge test due to applying variation voltage. In the thesis. air void. silicone oil. of which may possibly exist real cables. are simulated by Electra 2D program. Also the relations between calculated field strength and the void defect type in the cable joint materails. In the modeling. electic field inner to the cable joint material composed by XLPE and EPDM is modeling simulated. We obtained the electric field distribution in void due to two conditions.

  • PDF

Electric Field Distribution Simulation of the Cable Joint Materials (케이블 접속재료의 전계분포 시뮬레이션)

  • 김형주;변두균;신종열;이덕진;이충호;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.601-604
    • /
    • 2001
  • The insulation materials of cables used for underground power transmission requires a higher insulating capability, and the most popular method to examine the cable is partial discharge test due to applying variation voltage. In the thesis, air void, silicone oil, of which may possibly exist real cables, are simulated by Electro 2D program. Also the relations between calculated field strength and the void defect type in the cable joint materials. In the modeling, eclectic field inner to the cable joint material composed by XLPE and EPDM is modeling simulated. We obtained the electric field distribution in void due to two conditions.

  • PDF

Effects Analysis of Partial Discharge Signal Propagation Characteristics in Underground Transmission Cables Using EMTP (EMTP를 이용한 지중송전케이블의 부분방전 신호 전파특성 분석)

  • Jung, Chae-Kyun;Jang, Tai-In
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.629-635
    • /
    • 2014
  • This paper describes propagation characteristics obtained by considering semiconducting screen and cross-bonding in underground transmission cables. The semiconducting screen of power cable has effect on propagation characteristics including attenuation, velocity and surge impedance. However, it is very difficult to apply the semiconduction screen for EMTP model because of the number of conductors limitation. Therefore, CIGRE WG 21-05 proposed advanced insulation structure and analysis technique of simplified approach including inner and outer semiconducting screen. In this paper, the various propagation characteristics analyse using this structure and technique for 154kV XLPE $2000mm^2$ cable. The frequency independent model of EMTP CABLE PARAMETER is used for just pattern analysis of propagation characteristics. For exact data analysis, the frequency dependent model of J-marti is used for EMTP modeling. From these result, various propagation characteristics of 154kV XLPE $2000mm^2$ cable according to semi conducting screen consideration, frequency range, cable length and pulse width are analysed. In addition, in this paper, the effects of cross-bonding are also variously discussed according to cross-bonding methods, direct connection and impedance of lead cable.

Effectiveness Evaluation and Operation Scheme on Cable Transposition in Underground Transmission Systems with Ungrounded Joint Box (접속함 비접지 지중송전계통에서 도체연가방식 채용의 효용성 평가 및 운용방안 수립)

  • Kim, June;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.240-246
    • /
    • 2015
  • Length of most underground power cable in home is not so long. Therefore it is operated without transposition due to low unbalanced ratio. However, if cable length is long, line constant of each cable will be different. Different line constant can induce unbalanced voltage and current of sheath. Also it can induce several induced interference. This paper describes the effectiveness of transposition through sheath component analysis on transposition and untransposition of cable conductor. Especially sheath current and induced voltage are analyzed and compared in case of transposition and untransposition. EMTP is used for modeling and analysis.

Impedance Calculation of an Underground Transmission Cable System Installed with a Sheath Current Reduction Device

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won;Wang, Xin Heng;Song, Yong Hua
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.236-242
    • /
    • 2004
  • Previous research results indicated that the designed current reduction device could effectively reduce the sheath circulating current and that its RDP protection device could shield it against both fault and lightning strokes. In this paper, cable impedance is analyzed using wavelet analysis and distance relay algorithm following the installation of these devices so that the operation of distance relay can be estimated. The test results confirm that in these devices, the fault inception angle and SVL bonding types have no impact on the change of cable impedance. In other words, the conventional distance relay can be used without a new relay setting. Thus we can finally assert that the designed current reduction device and its protection device are effective and can be safely installed on the cable transmission system without disturbance.

Line Impedance Analysis of Underground Cable in Power Plant (발전소에 포설된 케이블 선로 임피던스 분석)

  • Ha, C.W.;Han, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.612-613
    • /
    • 2007
  • The line impedance is important data that are applied in all analysis fields of electric power system such as power flow, fault current, stability and relay calculation etc. Usually, the impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, the impedance can not be accurately calculated because cable systems have the sheath, grounding wires, and earth resistances. Therefore, if there is a fault in cable system, these terms will severely be caused many errors for calculating impedance. In this paper, the line impedance is measured in a power system of underground cables, and is analyzed by a generalized circuit analysis program, EMTP(Electromagnetic Transient Program), for comparison with the measured value. These analysis results are considered to become foundation of impedance calculation for underground cables.

  • PDF