• Title/Summary/Keyword: Underground pipes

Search Result 213, Processing Time 0.024 seconds

A study on the basic experiment of performance criteria for application of pipe bursting method in actual field (Pipe Bursting 공법의 적용성 검토를 위한 주요 성능평가 항목의 기초실험연구)

  • Park, Sangbong;Kim, Kibum;Seo, Jeewon;Park, Sanghyuk;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.435-443
    • /
    • 2018
  • Most of aged water supply pipes have been replaced by the open cut method. However, this method has some limitations because water pipes, in many cases, are buried together with other underground facilities or are buried in the middle of high-traffic roads or in narrow alleyways where boring machines cannot be used. This research developed a pipe bursting device for small diameter pipes that enables pipe replacement without excavating the ground, by the busting of existing buried pipes followed by the traction and insertion of new pipes. As a results of examining the field applicability of the developed device, PE pipes and PVC pipes required the tractive force of 413.65~665.69 kgf and 457.43~791.35 kgf respectively, plus an additional 30 % tractive force per elbow. The proper number of bursting head was demonstrated that the connection of more than 2 heads could secure a stable bending radius of 15D. The developed device can be improved through field experiments involving various pipe types and pipe diameters, as well as presence/absence of elbow, so as to be utilized regardless of diverse variables according to the conditions of the soils surrounding existing pipes.

A Study on the Fracture Safety of Glass Fiber Reinforced Plastic Pipes (유리섬유 보강 플라스틱관의 파괴 안전성에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.121-126
    • /
    • 1994
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety as structural materials of GFRP(Glass Fiber Reinforced Plastics) which we wifely used in the developed countries becauses of their natural of anticorrosion and lightweight etc.. In the fracture test, the mid-span displacement, the strain and the yield load of the GFRP pipes are measured for different number of laminates, and fracture energy is estimated. From this study, it is known that GFRP pipe could be used as structural materials in underground buried pipes if their ductility and strength are increased by controlling number of laminates. Furthermore, because of their merit of lightweight, they can contribute greatly to reduction of construe-tlon cost when they are employed.

  • PDF

Artificial Groundwater Recharge by Underground Piping Method (지하관리에 의한 지하수함양 연구)

  • 안상진;이종형
    • Water for future
    • /
    • v.23 no.2
    • /
    • pp.239-250
    • /
    • 1990
  • The method for artificial grondwater recharge can be categorized into two groups, one is well method and the other one is scattering method. Underground piping method belongs to the latter group and it is to infiltrate water from porous pipes buried underground. This paper shows the result of indoor experiment and numerical analysis concerning this method. The purpose of the study is to maky the infiltration aspects and groundwater recharge in underground piping method. We have found that the recharge height is effect by the difference of water level and a distance of pipe laying.

  • PDF

Artificial Groundwater Recharge by Underground piping method (지하매관에 의한 지하수함양 연구)

  • 안상진;이종형
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1990.07a
    • /
    • pp.61-79
    • /
    • 1990
  • The method for artificial groundwater recharge can be categorized into two groups, one is well method and the other one is scattering method. Underground piping method belongs to the latter group and it is to infiltrate water from porous pipes buried underground. This paper shows the result of indoor experiment and numerical analysis concerning this method. The purpose of the study is to make the infiltration aspects and groundwater recharge in underground piping method. We have fround that the recharge height is effect by the difference of water level and a distance of pipe laying.

  • PDF

Study on Subsurface Collapse of Road Surface and Cavity Search in Urban Area (도심지 노면하부 지반함몰 및 공동탐사 사례 연구)

  • Chae, Hwi-Young
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.387-392
    • /
    • 2017
  • Recently, road cave-ins, also referred to as ground sinking, have become a problem in urban environments. Public utility facilities such as sewage pipelines, communications pipes, gas pipes, power cables, and other types of underground structures are installed below the roads. It was reported that cave-ins are caused by the aging and lack of proper maintenance of underground facilities, as well as by construction problems. A road cave-in is first initiated by the formation of cavities typically induced by the breakage of underground pipelines. The cavities then grow and reach the base of the pavement. The traffic load applied at the surface of the roads causes an abrupt plastic deformation. This type of accident can be considered as a type of disaster. A road cave-in can threaten both human safety and the economy. It may even result in the loss of human life. In the city of Seoul, efforts to prevent damage before cave-ins occur have been prioritized, through a method of discovering and repairing joints through the 3D GPR survey.

Improving the Detection of the Water Mains Underground Facilities (상수도 지하시설물 탐사 개선에 관한 연구)

  • Kim, Jae-Myeong;Lee, Byung-Woon;Choi, Yun-Soo;Yoon, Ha-Su
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.23-32
    • /
    • 2010
  • Water mains underground facilities are essential components to make up urban infrastructure. In order to manage these water mains underground facilities systematically and scientifically, GIS (Geographic Information System) had been constructed. For the sake of construction of GIS for water mains underground facilities, an exact underground detection and the construction of DB (Data Base) for buried water mains underground facilities should be preceded. In this study, in order to find out the ways to improve exact detection rate of data, the statistical analysis for the causes of detection raw degradation was done, and standardization methods of detection through a case study were suggested, When water mains underground facilities were measured, the detection of non-metallic water pipes was not carried out. The reason was that the results of detection was uncertain and detection was difficult because the assessment of public measurements was vulnerable. Moreover, due to the absence of standardized operating regulations for detection, systematic surveys weren't conducted. In this study, methods to standardize works over the detection of water mains underground facilities were presented so that we can improve the detection rate when we are doing that. As the proposals to improve detection rate, effective performance assessment over non-metallic pipes were presented, and related issues to supplement work regulations of public survey were described systematically.

Characteristics of Subsidence of a Road During the New Tubular Roof Construction Around a Shallow Tunnel (저심도 터널주변의 NTR보강 중 발생한 도로면 침하의 특성)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.620-634
    • /
    • 2018
  • The NTR(New Tubular Roof) method was used to secure the stability of the tunnel and minimize the subsidence of the road. The tunnel was constructed at about 7.5 meters deep below the highway. with a width of about 21 meters. Following the NTR method, 13 steel pipes with a diameter of 2.3 meters were digged and pushed in longitudinally along the tunnel profile and cut out sides of pipes to connect to adjacent pipes, then filled the inside of pipes and the connected space between pipes with concrete to complete the lining of the tunnel to be excavated. As the steel pipes were digged in sequentially, the area of relaxation was connected to each other and behaves like a gradually widening tunnel. When the steel pipes were digged in to the widest points of the tunnel, the settlement rate of the road surface was increasing to the maximum as 2.2 mm and the total settlement until the lining construction was approximately 7.7 mm. After that, by excavating a tunnel inside the pre-installed lining, an additional settlement of about 4.3 mm was occurred, resulting in the total settlement of about 11.8 mm after completing of tunnel construction.

Safety Monitoring Sensor for Underground Subsidence Risk Assessment Surrounding Water Pipeline (상수도관로의 주변 지반침하 위험도 평가를 위한 안전감시 센서)

  • Kwak, Pill-Jae;Park, Sang-Hyuk;Choi, Chang-Ho;Lee, Hyun-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.306-310
    • /
    • 2015
  • IoT(Internet of Things) based underground risk assessment system surrounding water pipeline enables an advanced monitoring and prediction for unexpected underground hazards such as abrupt road-side subsidence and urban sinkholes due to a leak in water pipeline. For the development of successful assessment technology, the PSU(Water Pipeline Safety Unit) which detects the leakage and movement of water pipes. Then, the IoT-based underground risk assessment system surrounding water pipeline will be proposed. The system consists of early detection tools for underground events and correspondence services, by analyzing leakage and movement data collected from PSU. These methods must be continuous and reliable, and cover certain block area ranging a few kilometers, for properly applying to regional water supply changes.

An Algorithm for Leak Locating using Coupled Vibration of Pipe-Fluid (배관-유체 연성진동을 이용한 누수지점 탐지 알고리듬 개발 연구)

  • Lee, Young-Sup;Yoon, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.798-803
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband sound from a leak location and this sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than 300m.

  • PDF

Cause of Corrosion and Evaluation of Material Corrosion Resistance on Underground Heat Transport Facilities Connected to Manhole (맨홀과 연결된 지하 열수송설비의 부식 원인 및 재질 내식성 평가)

  • Song, M.J.;Choi, G.;Kim, W.C.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.193-202
    • /
    • 2022
  • Manholes and underground spaces are installed to manage the buried heat transport pipes of the district heating system, and the corrosion damage of the equipment placed in this space often occurs. The purpose of this work is to identify locations with a high risk of corrosion damage in the air vent and to establish preventive measures based on precise analysis via sampling of heat transport pipes and air vents that have been used for about 30 years. The residual thickness of the air vent decreased significantly by reaching ~1.1 mm in thickness, and locations of 60~70 mm away from a transport pipe were the most vulnerable to corrosion. The energy dispersive X-ray spectroscopy (EDS) analysis was performed in the corroded oxides, and it was found that chloride ion was contained in the corrosion products. Anodic polarization tests were carried out on the air vent materials (SPPS250, SS304) with varying the amounts of chloride ions at two different temperatures (RT, 80℃). The higher concentration of chloride ions and temperature are, the lower corrosion resistances of both alloys are.