• Title/Summary/Keyword: Underground pipeline

Search Result 160, Processing Time 0.021 seconds

A numerical study on the characteristics of small underground cavities in the surrounding old water supply and sewer pipeline (노후 상하수관 주변지반의 소규모 지하공동 형상 특성을 고려한 수치해석에 관한 연구)

  • An, Joon-Sang;Kang, Kyung-Nam;Song, Ki-Il;Kim, Byung-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.287-303
    • /
    • 2018
  • In recent years, the occurrence of ground subsidence phenomenon is frequent in Korea. The Korean government has enacted a special law on underground safety and the law will be enforced from January 1, 2018. Under this new law, underground excavation should be assessed for underground safety impacts. After excavation construction, periodic geophysical surveys should be conducted to investigate the occurrence of underground cavities. When underground cavities were discovered, the underground safety was assessed through numerical analysis. However, it is controversial because the method of numerical modeling the discovered underground cavity is due to be established. In this study, the effect of the depth of the underground cavity from the shape of the underground cavity to the underground cavity was studied using a continuum analysis program. In this study, a method to reflect the shape of the underground cavity to the numerical modeling is presented. The relationship between the shape and depth of the underground cavity, and the factor of safety calculated by the shear strength reduction method (SSR) is presented. The results of this study are expected to form the basic data on underground safety impact assessment.

Constrution and Application of Underground Facilities Survey System using the 3D Integration Map of Underground Geospatial Information (3차원 지하공간통합지도를 활용한 지하시설물 현장 측량 시스템 구축 및 적용)

  • SONG, Seok-Jin;CHO, Hae-Yong;HEO, Hyun-Min;KIM, Sung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.164-173
    • /
    • 2021
  • Recently, as underground space safety issues such as sink hole, ground subsidence and damage to old underground facilities have been increasing in urban areas, the precise management of underground facilities ins more required. Thus, this study developed a function to that, visualize on Integration Map of Underground Geospatial Information a real-time survey data of underground facilities acquired on site or underground facility survey data acquired through on-site survey after underground facility exploration and developed a function convert to surveying-results. In addition, using the on-site survey performance utilization function in connection with the Integration Map of Underground Geospatial Information developed through this study, the surveying -results obtained with the Total-station at the water pipeline burial construction site in Eunpyeong-gu, Seoul are visualized on the Integration Map of Underground Geospatial Information and On-site verification was performed by converting spatial-information performance files and transmitting the Integration Map of Underground Geospatial Information to the mobile center. Based on this, it was possible to verify the work procedure using the surveying-results in the area where the Integration Map of Underground Geospatial Information was built, and to review the direction of future improvement directions.

Defect Estimation of a Crack in Underground Pipelines by CMFL Type NDT System

  • Kim, Hui Min;Park, Gwan Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2218-2223
    • /
    • 2014
  • A crack which is axially oriented with small size is hard to detect in conventional system. CMFL(Circumferential Magnetic Flux Leakage) type PIG(Pipelines Inspection Gauge) in the NDT(Nondestructive Testing), is operated to detect this defect called axially oriented cracks in the pipe. It is necessary to decompose the size and shapes of cracks for the maintenance of underground pipelines. This article is mainly focused on the decomposing method of the size and shape of the axially oriented cracks by using inspection signal data for defect.

Pinpointing of Leakage Location Using Pipe-fluid Coupled Vibration (파이프-유체의 연성진동을 이용한 누수위치 식별연구)

  • 이영섭;윤동진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • Leaks in underground pipelines can cause social, environmental and economical problems. One of relevant countermeasures against leaks is to find and repair of leak points of the pipes. Leak noise is a good source to identify the location of leak points of the pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they have not been so efficient tools. In this paper, accelermeters aroused to detect leak locations which could provide an easier and more efficient method. Filtering, signal processing and algorithm of raw input data from sensors for the detection of leak location are described. A 120m-long and a 70m-long experimental pipeline systems are installed and the results with the systems show that the algorithm with the accelerometers offers accurate pinpointing for leaks location detection. Theoretical analysis of sound wave propagation speed of water in underground pipes, which is critically important in leak locating, is also described.

Pinpointing of Leakage Location of Water Pipelines using Accelerometers (가속도계를 이용한 상수도 배관의 누수위치 식별연구)

  • 이영섭;윤동진;정중채
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.821-826
    • /
    • 2003
  • Leaks in underground pipelines can cause social, environmental and economical problems. One of a good contermeasures of leaks Is to find and repair of leak points of pipes. Leak noise is a good source to identify the location of leak points of pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they were not so efficient tools beca. In this paper, two accelermeters are used to detect leak locations which could provide an easier and efficient method. The filtering, signal processing and algorithm is described for the detection of leak location. A 120m-long pipeline system for experiment is installed and the results with the system show that the algorithm with the two accelerometers gives very accurate pinpointing of leaks. Theoretical analysis of sound wave propagation speed in underground pipes is also described.

  • PDF

Improvement of the Conductor Temperature Calculation Algorithm for Calculating the Allowable Current in the Underground Channel (지중관로에서의 실제 허용전류 산출을 위한 도체온도 계산 알고리즘 개선에 관한 연구)

  • Lee, Hyang-Beom;Lee, Byung-Chul;Kim, Jung-Hoon;Nam, Yong-Hyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.352-357
    • /
    • 2018
  • In this paper, the improvement of the conductor temperature calculation algorithm is studied. The allowable current of the underground transmission line is determined by the conductor temperature limit. Usually to calculate the allowable current limit, the conductor temperature is assumed in the most worst environment condition. It is possible to increase the transmission capacity if the actual burial environment is considered. Therefore, in this paper an algorithm is proposed to calculate the conductor temperature by distinguishing two area of a underground transmission line condition - the manhole where the temperature sensor can be installed and the underground transmission line in which the temperature sensor can not be installed easily. When calculating the conductor temperature by the underground line in the pipeline, the existing standard describes each environment as a single soil heat resistance and one ambient temperature. In order to compensate this situation, thermal resistance model that can take into consideration the ground surface temperature and under ground temperature is proposed. It is shown that the accuracy of the proposed model is increased compared with the existing standard calculation result.

A Consequence Analysis of the Mitigation Impact on Emergency Shut-off Valves for Accidents of Underground Pipelines (사고영향평가를 이용한 지하 매설 배관 사고 시 긴급차단밸브에 의한 피해 범위 감소에 관한 연구)

  • Park, Sang Bae;Lee, Chang Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.28-34
    • /
    • 2019
  • A large number of underground pipelines in the Ulsan National Industrial Complex has been constructed to improve the productivity of chemical products and tackle transportation problems. Now, the total of 1,293km of underground pipelines around 62 companies has been installed and operated. Many of underground pipelines have been installed outside of factories. For a past three years, five gas leakage accidents have occurred and the emergency response took up to 8 hours or more. Due to these delay in accidents, second serious accidents might occur and lead to occur damages to adjacent residents. In this study, it is assumed that emergency valve systems are installed under a ground and the efficacy of these is verified. Consequence analysis program was employed to evaluate the mitigation impact of emergency valve systems. The results show that these valve systems are economical and their performances for a mitigation are excellent. The results indicate that the installation of emergency valve systems for underground pipelines should be urgently legislated and performed.

Performance Comparison of Pipeline Defects' Length Estimation Using MFL Signals (자기 누설 신호를 이용한 배관 결함의 길이 추정 성능 비교)

  • Kim, Tae-Wook;Rho, Yong-Woo;Choi, Doo-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.108-113
    • /
    • 2009
  • MFL(magnetic flux leakage) inspection is a general method of non-destructive evaluation(NDE) of underground gas pipelines. Pipelines are magnetized by permanent magnets when MFL PIG(pipeline inspection gauge) gets through them. If defects or corrosions exist in pipelines, effective thickness is changed and thus variation of leakage flux occurs. The leakage flux signals detected by hall-sensors are analyzed to characterize defect's geometries such as length, width, depth, and so on. This paper presents several methods for estimating defect's length using MFL signals and their performances are compared for real defects carved in KOGAS pipeline simulation facility. It is found that 80% and 90% of minimum values for axial and peak values for radial signals respectively show the best performance in the point of length estimation error.

A Study on the Durability of the Polyethylene Coatings for Underground Pipeline (매설강관용 폴리에틸렌 피복재의 내구성)

  • Ryu, Keun-chang;Lee, Seong-Min;Kho, Young-Tai;Argent, Colin
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.4 s.18
    • /
    • pp.40-46
    • /
    • 2002
  • This study has been carried out to evaluate the reliability by examining the properties related to durability of commercially available coating systems in domestic. For this purpose slow crack growth resistance and oxidative induction time tests were introduced, which have been accepted as durability parameters in polyethylene pipes with low pressure. Based upon the experimental results on these parameters, desirable minimum values are proposed for the durability enhancement of the polyethylene coatings.

  • PDF

City Gas Pipeline Pressure Prediction Model (도시가스 배관압력 예측모델)

  • Chung, Won Hee;Park, Giljoo;Gu, Yeong Hyeon;Kim, Sunghyun;Yoo, Seong Joon;Jo, Young-do
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.33-47
    • /
    • 2018
  • City gas pipelines are buried underground. Because of this, pipeline is hard to manage, and can be easily damaged. This research proposes a real time prediction system that helps experts can make decision about pressure anomalies. The gas pipline pressure data of Jungbu City Gas Company, which is one of the domestic city gas suppliers, time variables and environment variables are analysed. In this research, regression models that predicts pipeline pressure in minutes are proposed. Random forest, support vector regression (SVR), long-short term memory (LSTM) algorithms are used to build pressure prediction models. A comparison of pressure prediction models' preformances shows that the LSTM model was the best. LSTM model for Asan-si have root mean square error (RMSE) 0.011, mean absolute percentage error (MAPE) 0.494. LSTM model for Cheonan-si have RMSE 0.015, MAPE 0.668.