• Title/Summary/Keyword: Underground excavation

Search Result 839, Processing Time 0.03 seconds

Visualization and Optimization of Construction Schedule Considering the Geological Conditions in the Complicated Underground Cavern (지하비축기지 건설시 지질조건을 고려한 건설공정의 가시화와 최적화 사례)

  • Choi, Yong-Kun;Park, Joon-Young;Lee, Sung-Am;Kim, Ho-Yeong;Lee, Hee-Suk;Lee, Seung-Cheol
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.167-173
    • /
    • 2009
  • Underground storage cavern is known as the most complicated underground project because of the complexity of construction schedule, tunnel size, and geological problems. In order to optimize the construction schedule of underground storage cavern, two up-to-date technologies were applied. The first technology was 3 dimensional visualization of complicated underground structures, and the second was 4 dimensional simulation considering construction resources, geological conditions and construction schedule. This application case shows that we can achieve optimized construction schedule in the ways to optimize the number of work teams, fleets, the sequence of tunnel excavation, the commencement time of excavation and the hauling route of materials and excavated rocks. 3 dimensional modeling can help designer being able to understand the status of complicated underground structures and to investigate the geological data in the exact 3 dimensional space. Moreover, using 4 dimensional simulation, designer is able to determine the bottle neck point which appear during hauling of excavated rocks and to investigate the daily fluctuation in cost.

Evaluation of excavation damage zone during TBM excavation - A large deformation FE analysis study (TBM 굴착으로 인한 굴착손상영역 범위 추정 - 대변형 수치해석 연구)

  • Seheon Kim;Dohyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Analyzing the tunnel excavation behavior and its effect on the surrounding ground involves large deformation behavior. Therefore, in order to properly simulate the tunnel excavation process and rigorously investigate the actual effect of excavation on surrounding ground and tunnel structure large deformation analysis method is required. In this study, two major numerical approaches capable of considering large deformations behavior were applied to investigate the effect of tunnel boring machine excavation on the surrounding ground: coupled Eulerian-Lagrangian (CEL) and the automatic remeshing (AR) method. Relative performance of both approaches was evaluated through the ground response due to TBM excavation. The ground response will be quantified by estimating the range of the excavation damaged zone (EDZ). By comparing the results, the range of the EDZ will be suggested on the vertical and horizontal direction along the TBM excavation surface. Based on the computed results, it was found that the size of EDZ around the excavation surface and the tendencies was in good agreement among the two approaches. Numerical results clearly show that the size of the EDZ around the tunnel tends to be larger for rock with higher RMR rating. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional due to higher confinement stress around the excavation surface.

Finite Element Analysis of Underground Electrical Power Cable Structures Considering the Effects of Construction Sequence (시공단계별 영향을 고려한 터널 전력구의 유한요소해석)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • In this paper structural analysis of underground electrical power cable structures which is excavated below the surface of the earth in the downtown area is carried out considering the effect of construction sequence. There are many various life-line facilities below the surface of the earth in the downtown area. MPDAP was used for finite element analysis of underground electrical power cable structures. Three typical sections are simulated by finite element models. Unbalanced equilibrium problems may be occurred when conventional finite element procedures were used for simulation of tunnel excavation. Therefore equilibrium perturbation concept was applied to solve these problems. The effects of time-dependent deformations in advancing tunnel excavation are considered in the stages of construction sequences as using the load distribution factor. It is shown that values of maximum displacement of both soil and rock surrounding underground electrical power cable structures obtained by our numerical studies are less than allowable values.

Sensitivity analysis of tunnel stability with a consideration of an excavation damaged zone (암반손상대를 고려한 터널 안정성 민감도 분석)

  • Kim, Jin-Soo;Kwon, Sanki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.91-104
    • /
    • 2014
  • An Excavation Damaged Zone (EDZ), in which rock properties are permanently changed due to blasting impact or stress redistribution, can influence the behavior and stability of structures. In this study, the mechanical stability of an underground opening was simulated by using FLAC, which is a two-dimensional modeling code, with a consideration of EDZ. A sensitivity analysis was also carried out with fractional factorial design. From the modeling, it was found that the behavior and the stability of an underground tunnel are strongly dependent on the existence of the EDZ. The sensitivity analysis showed that the key parameters affecting the factor of safety around the tunnel are in-situ stress ratio, depth, cohesion, reduction ratio, internal friction angle, and height and width of the tunnel. It is necessary to consider the EDZ, which can significantly affect mechanical stability in tunnel design.

Modeling the Effect of Water, Excavation Sequence and Reinforcement on the Response of Tunnels

  • Kim, Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.161-176
    • /
    • 1999
  • A powerful numerical method that can be used for modeling rock-structure interaction is the Discontinuous Deformation Analysis (D D A) method developed by Shi in 1988. In this method, rock masses are treated as systems of finite and deformable blocks. Large rock mass deformations and block movements are allowed. Although various extensions of the D D A method have been proposed in the literature, the method is not capable of modeling water-block interaction, sequential loading or unloading and rock reinforcement; three features that are needed when modeling surface or underground excavation in fractured rock. This paper presents three new extensions to the D D A method. The extensions consist of hydro-mechanical coupling between rock blocks and steady water flow in fractures, sequential loading or unloading, and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the D D A method with the new extensions are presented. Simulations of the underground excavation of the \ulcornerUnju Tunnel\ulcorner in Korea were carried out to evaluate the influence of fracture flow, excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that fracture flow and improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the D D A program with the three new extensions can now be used as a practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF

Effect of widening excavation in divergence section of a double-deck tunnel on its stability (복층터널 분기구 확폭구간 굴착에 따른 안정성 영향)

  • La, You-Sung;Kim, Yunhee;Lee, Kangil;Kim, Yongseong;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.435-450
    • /
    • 2020
  • The divergence section of a double-deck tunnel can be divided into a 'widening pre-divergence section', a large cross-section with a cap shape and a 'post-divergence section' where the separation between the main and the branch tunnel is made. Since the cross-section of the widening pre-divergence section is considerably larger than that of the post-divergence section, the influence of excavation due to the different sizes and shapes in the cross-section should be considered in the examination of the tunnel stability. In this study, the effect of the preceding excavation, that is the excavation of the widening pre-divergence section, on excavation stability of the post-divergence section was examined by varying the excavation methods and bench lengths through 3D finite element analysis. The results showed that although the effects of the excavation methods and the bench lengths are not significant on the variation of principal stresses, the preceding excavation causes a relatively large variation on the stresses which may have an impact on the stability of the post-divergence section from the comparison of Stress-Strength Ratio (SSR) between the cases with and without the consideration of the preceding excavation effect by 2D finite element analysis.

Geotechnical investigation on causes and mitigation of ground subsidence during underground structure construction (터널 및 지중매설물 시공에 따른 지반함몰 발생 원인 및 대책에 대한 지반공학적 조사 연구)

  • Choi, Shin-Kyu;Back, Seung-Hun;An, Jun-Beom;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2016
  • This study investigated the occurrences, causes, and mitigation of the recent ground subsidence and underground cavity generation events in Korea. Two main causes of ground subsidence are (1) the soil erosion by seepage during tunneling and earth excavation and (2) the damage of underground pipes. The main cause of the soil erosion during tunneling was the uncontrolled groundwater flow. Especially, when excavating soft grounds using a tunnel boring machine (TBM), the ground near TBM operation halt points were found to be the most vulnerable to failure. The damage of underground pipes was mainly caused by poor construction, material deterioration, and differential settlement in soft soils. The ground subsidence during tunneling and earth excavation can be managed by monitoring the outflow of groundwater and eroded soils in construction sites. It is expected that the ground subsidence by the underground pipe damage can be managed or mitigated by life cycle analysis and maintenance of the buried pipes, and by controlling the earth pressure distribution or increasing the bearing capacity at the upper ground of the buried pipes.