• Title/Summary/Keyword: Underground distribution cable

Search Result 104, Processing Time 0.03 seconds

Effect of Ionic Impurities in Materials for CN/CV Underground Distribution Power Cable Jackets (지중배전케이블 외피용 컴파운드의 이온투과 특성 비교)

  • Kim, Dong-Myung;Kwon, Tae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.167-168
    • /
    • 2008
  • The permeation of $Ca^{2+}$ ions through the materials such as polyvinyl chloride (PVC) and non-halogenated flame retardant cross linked polyolefin (FR-XLPO) used for CN-CV underground distribution power cable jackets was investigated. The permeation of $Ca^{2+}$ ions was found to increase with the increase of time. The FR-XLPO showed higher permeation of $Ca^{2+}$ ions, by a factor of about two, than the PVC. This was explained by the destruction of structural integrity caused by mixing a large amount of mineral flame retardant such as $Mg(OH)_2$ used to impart non-flame ability to the jacket material.

  • PDF

Finite Element Analysis of Underground Electrical Power Cable Structures Considering the Effects of Construction Sequence (시공단계별 영향을 고려한 터널 전력구의 유한요소해석)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • In this paper structural analysis of underground electrical power cable structures which is excavated below the surface of the earth in the downtown area is carried out considering the effect of construction sequence. There are many various life-line facilities below the surface of the earth in the downtown area. MPDAP was used for finite element analysis of underground electrical power cable structures. Three typical sections are simulated by finite element models. Unbalanced equilibrium problems may be occurred when conventional finite element procedures were used for simulation of tunnel excavation. Therefore equilibrium perturbation concept was applied to solve these problems. The effects of time-dependent deformations in advancing tunnel excavation are considered in the stages of construction sequences as using the load distribution factor. It is shown that values of maximum displacement of both soil and rock surrounding underground electrical power cable structures obtained by our numerical studies are less than allowable values.

Suitability Evaluation on Joint Operation of Neutral Wire and Overhead Grounding Wire through Lightning Surge Analysis in Combined Distribution System (혼합배전계통에서 뇌과전압 해석을 통한 중성선과 가공지선 혼용 운전의 타당성 평가)

  • Jeong, Seok-San;Lee, Jong-Beom;Kim, Yong-Kap;Song, Il-Keun;Kim, Byoung-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2135-2142
    • /
    • 2010
  • This paper studies the validity about a joint operation of neutral wire and overhead grounding wire in combined distribution systems. The overhead grounding wire and neutral wire are currently installed separately and grounded by common. However there is no any ineffectiveness or electrical problem in case of the proposed system, such system can be operated at real distribution system. Therefore this paper describes the suitability of a joint operation through lightning surge analysis on combined distribution systems. Lightning surge analysis is carried out by EMTP/ATPDraw to obtain the overvoltage of overhead line and underground cable in various conditions such as locations and current types of lightning stroke. Overvoltage gained by the analysis show that the insulation strength of the joint operation case is not stable compare with the current operation case.

A Suggestion of Standards and factors applied Distributed Power System to electrical characteristic of HTS cable (배전계통 적용을 위한 초전도케이블의 전기적 특성요건과 규격검토)

  • Lee, Hyun-Chul;Lee, Geun-Joon;Hawg, Si-Dol;Son, Seung-Ho;Lim, Ji-Hyun;Jong, Sung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.165_166
    • /
    • 2009
  • A HTS(High Temperature Superconductor) Cable is regarded as the most underground power to respond higher power density delivery system. This paper discussed electrical characteristic and standards of HTS Cable system. Various HTS cable characteristics are examined[3-5], ad compared with XLPE cable characteristics on possible distribution system environment. HTS cable is required to stabilize thermal condition for superconducting status, possible improper operating condition which affects quench, unbalanced, and harmonics impacts are discussed. HTS cable is customer designed cable which shall be implemented in special requirement of power system, the standard origination process requires to establish a series of methodology including design manufacturing, testing and installation.

  • PDF

Surge Protection Method of the Underground Distribution System in Korea (국내 지중배전시스템의 서어지 보호방안)

  • Lee, Jae-Bong;Jung, Yeon-Ha;Park, Chul-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.84-88
    • /
    • 2008
  • This paper deals with the part of the surge protection method of the underground distribution system in Korea using arrestors by simulating with ATP-EMTP(Electro-Magnetic Transient Program) based on the "A Study on the Surge Propagation Property of Underground Distribution Cables by Field Tests" which was published in 2007. Although domestic underground distribution system is protected by arrester which installed at a riser pole, we need to additional protection method because lightning surge can be doubled and affect underground distribution facilities when it is injected into the mixed distribution line of overhead and underground through a riser pole. In this paper, it is proposed that scout method that arresters are attached to the sides of a riser pole is better than developing of a elbow arrester on a viewpoint of economics and maintenance, because of the situation of the domestic underground distribution system.

Determination of Proto Type for 345kV CV Cable Accessories (345kV CV 케이블 접속함의 Proto Type 선정)

  • Lee, S.K.;Kim, I.T.;Son, S.H.;Choi, S.G.;Huh, G.D.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1629-1631
    • /
    • 1998
  • Crosslinked polyethylene (XLPE) insulated cables are now widely used all over the world for extra-high voltage underground transmission systems. Prefabricated type (compression type) joint has developed in order to shorten the assembly time and lower the possibility of contamination at site by many companies in the world. For outdoor termination, to control the electric field distribution as uniform as possible, especially for the use of extra-high voltage system. much of products are adopting the oil-impregnated condensor cone type instead of electric field control element which uses the permitivity of it only (not capacitance). For Gas-immersed termination, dimension of outer insulation bushing was determined by IEC Publication 859. The highest voltage of underground power cable system is 345kV now, in Korea. We have much of experiences of the development of prefabricated type accessories for CV cable systems (154kV, 161kV, 230kV level). So it was possible to inspect the proto type of accessories for 345kV CV cable system and seems that the need time for the development of products is reduced.

  • PDF

Analysis of Eddy Current and Hysteresis Loss Distribution from Fixing Structure of 154 kV Underground Transmission Cable (154 kV 지중송전선로의 고정용 금구류에서 발생하는 와전류 및 히스테리시스 손실 분포 해석)

  • Song, Hyeeun;Im, Sanghyeon;Kim, Kyoung Youn;Park, Gwansoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2018
  • The use of underground transmission power lines is expanding for the beauty and convenience of the near city. However, there is a lack of research on the losses from underground transmission power lines, especially those that support three-phase cables operating 24 hours a day. Since the supporting the cable is made of a material having a conductivity and a magnetic permeability, an eddy current and a hysteresis loss are generated due to a magnetic field caused by a current flowing in the cable. Losses occurring in this case adversely affect the power energy transfer efficiency, so research on loss is necessary. Therefore, in this paper, we analyzed the eddy currents and hysteresis losses that occur in a supporting a cable through three - dimensional finite element analysis.

An Application of the Water Mist System for Underground Utility Tunnel (지하구 미분무수 소화설비 적용에 관한 연구)

  • 김운형;김종훈;박승민;김태수;민인홍;전동일;김상욱
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.66-76
    • /
    • 2002
  • This paper includes new nozzle design, basic design factors of water mist system that minimize a thermal damage of cable causing business interruption and applying underground utility tunnel. A underground concrete structure (2.5 m(H)$\times$2.5 m(W)$\times$25 m(D)) is constructed in order to test a nozzle performance. Under the designing fire scenario, critical thermal damage of cable sheath ($400^{\circ}c$) reached within a 2 minutes with unsuppressed fire, but type 1 nozzle (SMD 470 $\mu{m}$) and type 2 nozzle (SMD 650 $\mu{m}$) control cable temperature below $400^{\circ}c$. A system performance and fundamental design factors; K factor, flow rate, spray angle, size distribution, nozzle pressure, spray density are analyzed and proposed for system optimization.

Electrical Characteristics due to Inner Defect of Insulating Materials for Power Cable. (전력케이블 절연재료의 내부결함에 따른 전기적 특성)

  • Choi, Sang-Gi;Kim, Tag-Yong;Kim, Wang-Kon;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.27-30
    • /
    • 2003
  • Recently, on power system, it is used to high voltage of transmission and distribution due to safe power supply and have high quality and insulation in order to satisfy excellent insulator. Thus, according to underground of high voltage cable, is occurred break down by ground short. Therefore, it is used to high quality XLPE power cable to interrupt instantaneous voltage drop. If it appear inner defect for cable whose have high quality and insulation, it is reduced rapidly due to concentration of electrical field. After assemble to manufacture, in order to inspect cable condition, it is decided much inspection standard. In this paper, In inner defect of assembling cable at manufacture, for measure the variation of insulation condition by void. it tested the variation of insulating characteristics, using $\phi$-q-n distribution variation in partial discharge experiment.

  • PDF

Analysis of Sequence Impedances of 345kV Cable Transmission Systems (실계통 345kV 지중송전선 대칭좌표 임피던스의 해석)

  • Choi, Jong-Kee;Ahn, Yong-Ho;Yoon, Yong-Beum;Oh, Sei-Ill;Kwa, Yang-Ho;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. In case of balanced fault, such as three phase short circuit, transmission line can be represented by positive sequence impedance only. The majority of fault in transmission lines, however, is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and skywires in overhead transmission systems and through cable sheaths and earth in cable transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, conventional and EMTP-based sequence impedance calculation methods were described and applied to 345kV cable transmission systems (4 circuit, OF 2000mm2). Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.