• Title/Summary/Keyword: Underground culverts

Search Result 17, Processing Time 0.022 seconds

The Study on problems in Construction of Corrugated Steel Underground Culverts and Complementary Measures Thereof (파형강판 지중암거의 시공상 문제점 및 보완에 대한 고찰)

  • Jung, Young-Hwa;Seong, Yoo-Kyeong;Chang, Dong-Hui
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.133-140
    • /
    • 2008
  • The Corrugated steel plate structure(CPS) can be applied to construction sites with various purposes, and the merits of CPS such as economical efficiency and swiftness can be utilized when it is constructed properly in consideration of its characteristics. However, in Korea, since the history of corrugated steel plate culvert is relatively short, there are not enough design standards. This research is prepared for finding out the causes through examining and analyzing the problems based on the examples from the existing constructions. Moreover, this study can be utilized in preparing designs and design standards of corrugated steel plate culvert in the future and devising prevention measures and complementary measures by studying construction methods considering features of construction sites and circumstances, several points to be considered while carrying out construction works and prevention measures of a problem with the existing structures.

  • PDF

A Study on the Analysis and Corner Joint Design of Underground R.C Box Structure (지하의 철근콘크리트 박스구조물의 해석 및 우각부 설계에 관한 연구)

  • 오병환;채성태;신호상;김의성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.253-257
    • /
    • 1996
  • A basic assumption in the current design and analysis of reinforced concrete(RC) box structures, which are constructed by the open cut and fill method, is that the displacements and forces are uniform in the longitudinal direction of the structure. The solution may be therefore obtatined from the analysis of a unit wide strip along longitudinal axis. This strip is said to be in a plane strain condition, meaning that the out of plane deformations are vanished. The current design of box structure is carried out by the result of planar frame model for the sake of simplicity. The purpose of this study is to show more rational design method of box culverts considering a rigid zone of corner joints. The current analysis of box structures will be compared with the plane strain analysis as well as 3-d shell model. Reinforcement quantity is also determined to resist the tensile force in corner joints of box structures using strut-tie model which has been developed through the elastic analysis.

  • PDF

Compaction Induced Lateral Earth Pressures (뒷채움의 다짐에 의한 횡방향(橫方向) 토압(土壓))

  • Chung, Sung Gyo;Chung, In Joon;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.51-64
    • /
    • 1991
  • To evaluate the compaction - induced lateral earth pressure acting on retaining structures such as retaining walls, abutments, culverts, underground walls, etc., a new equation is developed using the newly proposed hysteretic model simulating soil's loading - unloading behavoir under Ko-condition. The lateral pressurds calculated by the new equation are found to agree well with those of field tests previously performed by other researchers.

  • PDF

Earth Pressure on the Underground Box Structure (지중 박스구조물에 작용하는 토압)

  • 이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.243-250
    • /
    • 2000
  • The mechanical behavior of the underground box culvert constructed by the open cut method depends mainly on the earth pressure acting on it. In this study, the earth pressure on the underground box culverts constructed by the open cut method during and after the construction sequence was numerically analysed by using FLAC. The results are compared with those of the Marston-Spangler's theory, silo theory, and the model tests. The results showed that the vertical earth pressure on the upper slab of the box structure was not uniform. It was as large as the overburden in the middle part of the slab but was smaller or larger than that at its end part depending on the slope of the excavation, the depth of the cover, and the width of the side refill. The horizontal earth pressure on the side wail was much smaller than the earth pressure at rest and grew nonlinearly with the depth.

  • PDF

Case Study of Geogrid Reinforcement in Runway of Inchon International Airport (지오그리드를 활용한 인천국제공항 활주로 보강사례)

  • 신은철;오영인;이규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.105-116
    • /
    • 1999
  • The Inchon International Airport site was formed by reclaimed soil from the sea. The average thickness of soft soil Is about 5 m and most of soft soils are normally consolidated or slightly over consolidated. There are many box culverts which are being constructed under the runways in the airfield. Sometimes, differential settlement can be occurred in the adjacent of box culvert or underground structures at the top layer of runway Soil compaction at very near to the structure is not easy all the time. Thus, one layer of geogrid was placed at the bottom of lean concrete layer for the concrete paved runway and at the middle of cement stabilized sub-base course layer for the asphalt paved runway. The length of geogrid reinforcement is 5m from the end of box culvert for both sides. The extended length of geogrid was 2m from the end of backfill soil in the box culvert. The tensile strength tests of geogrid were conducted for make sure the chemical compatibility with cement treated sub-base material. The location of geogrid placement for the concrete paved runway was evaluated. The construction damage to the geogrid could be occurred. Because the cement treated sub-base layer or lean concrete was spread by the finisher. The magnitude of tensile strength reduction was 1.16%~1.90% due to the construction damage and the ultimate tensile strength is maintained with the specification required. Total area of geogrid placement in this project is about 50,000 $m^2$.

  • PDF

A Study on Combustion Characteristics in each Coating Thickness of Fire Retardant Paints (난연도료의 도포 두께별 연소특성에 관한 연구)

  • Kim, Hong;Park, Hyung-Ju
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.36-41
    • /
    • 2003
  • This experimental study shows the combustion characteristics for each coating thickness of water and oil paint which are used as fire retardant paints that prevent fire propagation through cables in underground culverts and trays. To evaluate combustion characteristics, smoke density(ASTM E 662) and Limited Oxygen Index(ASTM D 2863) experiment method was used. As the results of this study, the combustion characteristics of fire retardant paints produced the following : (a) The molt suitable coating thickness of fire retardant paint was 1.5∼2.0 mm in water paint and 0.2 mm in oil paint. (b) Flaming method in experiments of smoke density were found to be higher than Non-flaming method. (c) Water paint has the fire retardant effect and characteristics better than oil paint in measurement results of smoke density and oxygen index. (d) The oxygen index of water and oil fire retardant was able to know that it was satisfied a standard (30 or above).

Probabilistic Estimation of Service Life of Box Culvert for Power Transmission Considering Carbonation and Crack Effect (탄산화와 균열을 고려한 전력구 콘크리트 구조물의 확률론적 수명 예측)

  • Woo, Sang-Kyun;Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.30-40
    • /
    • 2014
  • The demand of underground structure such as box culvert for electric power transmission is increasing more and more, and the service life extension of these structures is very important. Recent observations in field and experimental evidences show that even steel in concrete can be corroded by carbonation reaction of cover concrete. Carbonation-induced corrosion in concrete may often occur in a high carbon dioxide environment. In this study, the risk of carbonation of box culverts in our nation was evaluated by measuring the carbonation rate and concrete cover depth in field. Then, the service life due to carbonation at the cover depth was calculated by in situ information and the Monte Carlo simulation in a probabilistic way. Additionally, the accelerated carbonation test for the cracked beam specimen was executed and the crack effect owing to the carbonation process on the service life of box culvert was numerically investigated via Monte Carlo simulation based on the experimental results.