• Title/Summary/Keyword: Underground Spatial

Search Result 256, Processing Time 0.023 seconds

Construction of Precise Mine Geospatial Information and Ore Modeling for Smart Mining (스마트마이닝을 위한 정밀 광산공간정보 구축 및 광체 모델링)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.725-731
    • /
    • 2020
  • In mineral resource development, resource exploration is a task to find economical minerals on the surface and underground, and the success rate is low compared to the development and production stages, and it is necessary to collect a lot of data through exploration and accurately analyze the collected information. In this study, mine spatial information was constructed using a 3D (Three-dimensional) laser scanner, and accuracy evaluation was performed to obtain a maximum deviation of 0.140 m and an average of 0.095 m in the X, Y and Z directions, and the possibility of utilizing the construction of mine geospatial information through a 3D laser scanner could be presented. In addition, the ore body modeling was performed by applying the interpolation method of the ore body section using the resource exploration results. The ore body modeling result was superimposed with the modeling result of the mine geospatial information built through the 3D laser scanner to construct the ore body modeling result based on the precise mine geospatial information. The results of ore body modeling based on mine geospatial information built through research can increase the ease of data interpretation and the accuracy of the calculated data, which will greatly increase the efficiency of work related to mineral resource development and mine damage prevention in the future.

Solid Waste Disposal Site Selection in Rural Area: Youngyang-Gun, Kyungpook (농촌지역 쓰레기 매립장 입지선정에 관한 연구 -경상북도 영양군을 사례로-)

  • Park, Soon-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.1
    • /
    • pp.63-80
    • /
    • 1997
  • This study attempts to establish the criteria of site selection for establishing solid waste disposal facility, to determine optimal solid waste disposal sites with the criteria, and to examine the suitability of the selected sites. The Multi-Criteria Evaluation(MCE) module in Idrisi is used to determine optimal sites for solid waste disposal. The MCE combines the information from several criteria in interval and/or ratio scale to form a single index of evaluation without leveling down the data scale into ordinal scale. The summary of this study is as follows: First, the considerable criteria are selected through reviewing the literature and the availability of data: namely, percent of slope, fault lines, bedrock characteristics, major residential areas, reservoirs of water supply, rivers, inundated area, roads, and tourist resorts. Second, the criteria maps of nine factors have been developed. Each factor map is standardized and multiplies by its weight, and then the results are summed. After all of the factors have been incorporated, the resulting suitability map is multiplied by each of the constraint in turn to "zero out" unsuitable area. The unsuitable areas are discovered in urban district and its adjacencies, and mountain region as well as river, roads, resort area and their adjacency districts. Third, the potential sites for establishing waste disposal facilities are twenty five districts in Youngyang-gun. Five districts are located in Subi-myun Sinam-ri, nine districts in Chunggi-myun Haehwa-ri and Moojin-ri, and eleven districts in Sukbo-myun Posan-ri. The first highest score of suitability for waste disposal sites is shown at number eleven district in Chunggi-myun Moojin-ri and the second highest one is discovered at number twenty one district in Sukbo-myun Posan-ri that is followed by number nine district in Chunggi-myun Haehwa-ri, number seventeen and twenty three in Sukbo-myun Posan-ri, and number two in Subi-myun Sinam-ri. The first lowest score is found in number six district in Chunggi-myun Haehwa-ri, and the second lowest one is number five district in Subi-myun Sinam-ri. Finally, the Geographic Information System (GIS) helps to select optimal sites with more objectively and to minimize conflict in the determination of waste disposal sites. It is important to present several potential sites with objective criteria for establishing waste disposal facilities and to discover characteristics of each potential site as a result of that final sites of waste disposal are determined through considering thought of residents. This study has a limitation of criteria as a result of the restriction of availability of data such as underground water, soil texture and mineralogy, and thought of residents. To improve selection of optimal sites for a waste disposal facility, more wide rage of spatial and non-spatial data base should be constructed.

  • PDF

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.

A Study on the Clustering Method of Row and Multiplex Housing in Seoul Using K-Means Clustering Algorithm and Hedonic Model (K-Means Clustering 알고리즘과 헤도닉 모형을 활용한 서울시 연립·다세대 군집분류 방법에 관한 연구)

  • Kwon, Soonjae;Kim, Seonghyeon;Tak, Onsik;Jeong, Hyeonhee
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.95-118
    • /
    • 2017
  • Recent centrally the downtown area, the transaction between the row housing and multiplex housing is activated and platform services such as Zigbang and Dabang are growing. The row housing and multiplex housing is a blind spot for real estate information. Because there is a social problem, due to the change in market size and information asymmetry due to changes in demand. Also, the 5 or 25 districts used by the Seoul Metropolitan Government or the Korean Appraisal Board(hereafter, KAB) were established within the administrative boundaries and used in existing real estate studies. This is not a district classification for real estate researches because it is zoned urban planning. Based on the existing study, this study found that the city needs to reset the Seoul Metropolitan Government's spatial structure in estimating future housing prices. So, This study attempted to classify the area without spatial heterogeneity by the reflected the property price characteristics of row housing and Multiplex housing. In other words, There has been a problem that an inefficient side has arisen due to the simple division by the existing administrative district. Therefore, this study aims to cluster Seoul as a new area for more efficient real estate analysis. This study was applied to the hedonic model based on the real transactions price data of row housing and multiplex housing. And the K-Means Clustering algorithm was used to cluster the spatial structure of Seoul. In this study, data onto real transactions price of the Seoul Row housing and Multiplex Housing from January 2014 to December 2016, and the official land value of 2016 was used and it provided by Ministry of Land, Infrastructure and Transport(hereafter, MOLIT). Data preprocessing was followed by the following processing procedures: Removal of underground transaction, Price standardization per area, Removal of Real transaction case(above 5 and below -5). In this study, we analyzed data from 132,707 cases to 126,759 data through data preprocessing. The data analysis tool used the R program. After data preprocessing, data model was constructed. Priority, the K-means Clustering was performed. In addition, a regression analysis was conducted using Hedonic model and it was conducted a cosine similarity analysis. Based on the constructed data model, we clustered on the basis of the longitude and latitude of Seoul and conducted comparative analysis of existing area. The results of this study indicated that the goodness of fit of the model was above 75 % and the variables used for the Hedonic model were significant. In other words, 5 or 25 districts that is the area of the existing administrative area are divided into 16 districts. So, this study derived a clustering method of row housing and multiplex housing in Seoul using K-Means Clustering algorithm and hedonic model by the reflected the property price characteristics. Moreover, they presented academic and practical implications and presented the limitations of this study and the direction of future research. Academic implication has clustered by reflecting the property price characteristics in order to improve the problems of the areas used in the Seoul Metropolitan Government, KAB, and Existing Real Estate Research. Another academic implications are that apartments were the main study of existing real estate research, and has proposed a method of classifying area in Seoul using public information(i.e., real-data of MOLIT) of government 3.0. Practical implication is that it can be used as a basic data for real estate related research on row housing and multiplex housing. Another practical implications are that is expected the activation of row housing and multiplex housing research and, that is expected to increase the accuracy of the model of the actual transaction. The future research direction of this study involves conducting various analyses to overcome the limitations of the threshold and indicates the need for deeper research.

Economic Analysis of Upland Crop Irrigation Between Individual and Collective Well Water Supply (밭 공간분포와 개별·집단관정 이용을 고려한 밭용수 공급 경제성 분석)

  • JANG, Seongju;PARK, Jinseok;SHIN, Hyung-Jin;KIM, Hyungjoon;HONG, Rokgi;SONG, Inhong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.192-207
    • /
    • 2020
  • Profitability of upland crops is better than paddy crops and proportion of upland is increasing. However, there is a lack of infrastructures for upland irrigation. The object of this study were to develop water supply scenarios using individual and collective agricultural wells to evaluate economic feasibility to consider geographical analysis of upland farms and water supply facilities. Cheongyang, Dangjin, Yesan, and Goesan were selected as study areas where four different crops of red pepper, chinese cabbage, apple, and bean, respectively, were mainly produced in Chungcheong province. As a result, B/C ratio was estimated as 1.49, 1.36, 1.90, and 0.71 in using individual wells scenario, and 1.45, 1.20, 1.91, and 0.65 in using collective wells scenario for red pepper, chinese cabbage, apple, and bean. It turned out that change of price effected on economic feasibility a lot for crops with low production income. As a result of evaluating economic feasibility by number of plots for developing collective well, there was no effect of economy of scale for red pepper and chinese cabbage. In case of collectivizating more than 20 upland plots, effect of economy of scale appeared for apple and bean. In conclusion, development of water using high value crops including red pepper and apple, and effect of collective well requires additory analysis of .spatial distribution of farms.

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.