• Title/Summary/Keyword: Underbody

Search Result 37, Processing Time 0.043 seconds

Development of Wind Noise Source Identification Technique for Vehicle Underbody (자동차 하부 공력소음 파악 기술의 개발)

  • 이강덕;정승균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.353-356
    • /
    • 2003
  • Acoustic holography is adopted in identifying the noise sources of a vehicle's underbody. Wind noise from a vehicle's underbody accounts for a large portion of the overall noise level due to the complex flow structure. Current study presents the development process of acoustic holography in the vehicle underbody, and discusses the results obtained using the method. Difficulties associated with using acoustic holography as well as the implication of the results regarding future noise reduction possibilities are discussed.

  • PDF

A Study of Tie Shape Effects for Reduction of Underbody Train Gust of High-Speed Train (고속열차 하부 열차풍 감소를 위한 침목 형상 효과에 대한 연구)

  • Kim Jong-Yong;Kim Tae-Yoon;Ku Yo-Cheon;Yun Su-Hwan;Kwon Hyeok-Bin;Lee Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.454-459
    • /
    • 2005
  • In this study, the relationship between tie shape and underbody train gust of high-speed train is numerically investigated. To this end, complex train underbody/railroad model is replaced by simple plate/tie model. And it is tried to find a most important parameter for reduction of underbody train gust through the Taguchi method and orthogonal array. As a result, it is verified that the height of tie is most sensitive to the underbody train gust because of the cavity effect between ties. When the width and distance between ties are decreased, underbody train gust is also reduced. Consequently, the heighter is examined which can give the similar effect of higher tie without replacement of tie. The 5cm heighter can reduce underbody train gust about $73\%$, which value is only $7\%$ less than the higher tie.

Effect of the Underbody Shape of Road Vehicles on Drag and Lift (자동차 하단부 형상이 항력과 양력에 미치는 영향)

  • 류종우;조성권;양준모;최해천;유정열;이준식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.134-146
    • /
    • 1996
  • Numerical and experimental studies are performed to investigate the effect of the underbody shape of the simplified road vehicle on drag and life. Four different vehicle models with front and rear slanted variations at the lower surface are used in this study. Cases with a slanted underbody surface at front have smaller drag than those without a slanted surface. Also, cases with a slanted underbody surface at rear have smaller lift than those without a slanted surface. Pressure distributions along the model surfaces and velocity fields at the wake region are examined in detail. In general, numerical solutions are in agreement with experimental results.

  • PDF

Aerodynamic Characteristics of Heighter Shapes for a Tract Gust Reduction (선로상 돌풍 감소를 위한 높임침목형상의 공력특성 평가)

  • Rho, Joo-Hyhn;Kim, Jong-Yong;Ku, Yo-Cheon;Yun, Su-Hwan;Kwon, Hyeuk-Bin;Lee, Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • The ballast-flying, induced by strong underbody flow of high-speed train, can damage train underbody, wheel and even cause the safety problems. For this reason, a heighter is being used to prevent ballast-flying through underbody flow reduction. In this research, flow field around a heighter is numerically simulated.. And the parametric study of various heighter geometries is performed to find out more effective heighter shape. Through these numerical studies, the relation between the heighter shape and underbody flow is found out. Also new heighter shapes are numerically investigated and their performances of underbody flow reduction are verified.

A Study of Reduction of Underbody Train Gust by a Heighter (하이터를 이용한 하부 열차풍 감소에 대한 연구)

  • Ku Yo-Cheon;Kim Jong-Yong;Yun Su-Hwan;Rho Joo-Hyun;Lee Dong-Ho;Kwon Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1241-1247
    • /
    • 2005
  • The ballast-flying, induced by strong underbody train gust, may damage train underbody, wheel and even cause the safety problems. For this reason, a heighter is being used to prevent the ballast-flying phenomenon through underbody now reduction. In this research, flow field around a heighter is numerically simulated. And the parametric study of various heighter shapes is performed to find out more effective heighter shape. Also the ballast-flying probabilities are calculated for various ballast types and train speeds.

  • PDF

A Study on the Application of Underbody Coating for Vehicles with Shell Thickness of Thermally Expandable Microspheres

  • Kim, Jae-Chun;Jeon, Young-Bae;You Park, Hae-Na;Kim, Ji-Hoo;Kim, Myeong Woo
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.136-140
    • /
    • 2018
  • In this study, research was conducted into the manufacture of thermally expandable microspheres for automotive underbody coatings and applications in industry. In particular, the relationship between heat resistance and the ratio of crosslinking agents and initiators in the manufacture of the thermally expandable microspheres was investigated. We focused on the results with various cross-linking agents; our aim was to make the walls of the microspheres thicker to solve the problem of reductions in size caused by shrinkage when the microspheres are heated to $T_m$ ($T_{max}$). We observed the sectional thickness and surface of the samples with thicker walls. The thick thermally expandable microspheres showed reduced shrinkage and excellent stability in spite of prolonged exposure to heat.

Optimization of Carr's Automotive Aerodynamic Underbody Drag Coefficient Using Genetic Algorithm (유전 알고리즘을 이용한 Carr의 차량 하체 공력계수 최적화)

  • Kim, Ki Hyuk;Lee, Tea Sup
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.518-520
    • /
    • 2015
  • Automotive aerodynamic drag coefficient is important variable for vehicle's driving performance and fuel economy. In this research, we applied genetic algorithm to determine the geometrical figure which can optimize Carr's automotive aerodynamic underbody coefficient. And it's verified by previous research.

  • PDF

Development of Close-Coupled Catalyst(CCC) System to Meet EC Stage 2 (Ec Stage 2를 위한 Close-Coupled Catalyst(CCC) System의 개발)

  • 김대중;손건석;이귀영;최병철;강상록
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.140-146
    • /
    • 1996
  • A large portion(above 70%) fo the hydrocorbon and NOx emissions for a typical vehicle occur mainly before the conventional underbody catalyst reaches activation temperature. To meet the stringent regulation as EC stage 2, the emissions produced during this period must be reduced. One of alternative techniques is to place CCC(Close-Coupled Catalyst) near the exhaust manifold. In this study, the characteristics of CCC are observed through EEC mode.

  • PDF

Ballast Flying Probability Analysis for Ballast Types and Underbody Flow Conditions (자갈 종류 및 하부 유동 조건에 따른 자갈비산 확률 분석)

  • Rho, Joo-Hyun;Ku, Yo-Cheon;Yun, Su-Hwan;Park, Hoon-Il;Kwon, Hyeuk-Bin;Lee, Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.829-834
    • /
    • 2009
  • A ballast-flying probabilitie is suggested for various ballast types, heighter types and underbody flow conditions as train speeds. The average speed of measured points is converted to the ballast-flying probabilities of BFPF which come from wind tunnel test data. Underbody flow fields are numerically simulated for the various conditions. The results show that the ballast-flying probability is steeply increased as train speed increased, and reaches a value of 87% at 350 km/h train speed. And the differences of probabilities among the ballast shapes are considerably high. The upper surface of heighter or tie is most probable area. Through this study, the ballast-flying Sensitivities with heighter was defined to understand the characteristics of ballast-flying probability on various conditions. And the ballast-flying probability can be reduced by the heighter.