• 제목/요약/키워드: Uncoupling protein 1

검색결과 68건 처리시간 0.041초

절식과 고지방식 섭취가 골격근 UCP3 mRNA 발현에 미치는 영향 (Effects of Fasting and High-fat Diet Feeding on Uncoupling Protein 3 mRNA Levels of Skeletal Muscle in Rats)

  • 임기원;황혜정;서혜정;타무라 토모히로
    • 운동영양학회지
    • /
    • 제13권2호
    • /
    • pp.155-160
    • /
    • 2009
  • PURPOSE. The purpose of this study was to investigate the effects of fasting and high-fat diet feeding on uncoupling protein 3 (UCP3) mRNA levels, uncoupling the respiratory chain and producing heat, of skeletal muscle in rat. METHODS. Fasting experiment: Forty Male Sprague-Dawley rats (5 wk) were divided into non-fasting groups (CON) and fasting groups (FG) for 0 day, 0.5 day (12 hr), 1 day, 2 day and 3 day. The rats of CON were sacrificed at 0 and 3 day. High-fat diet experiment: Forty Male Sprague-Dawley rats (5 wk) were divided into low-fat diet groups (LF) and high-fat diet group feeding for 0 day, 0.5 day (12 hr), 1 day, 2 day and 3 day. The rats of LF were sacrificed at 0 and 3 day. Analysis: Analysis of UCP3 mRNA expression was used by Real-time PCR. RESULTS. UCP3 mRNA levels of FG group were increased according to time course for 2 days- fasting but decreased at 3 day-fasting. UCP3 mRNA of HF were increased during HF diet feeding for 2 day, and peaked at 1 day-HF feeding, but decreased 2 day and 3 day-HF feeding CONCLUSION. Therefore, it may be rational that UCP3 is up-regulation when a large amount of fatty acids influx occurs in skeletal muscles as well as might have a role for fine adjustments of energy expenditure.

Nrf2 induces Ucp1 expression in adipocytes in response to β3-AR stimulation and enhances oxygen consumption in high-fat diet-fed obese mice

  • Chang, Seo-Hyuk;Jang, Jaeyool;Oh, Seungjun;Yoon, Jung-Hoon;Jo, Dong-Gyu;Yun, Ui Jeong;Park, Kye Won
    • BMB Reports
    • /
    • 제54권8호
    • /
    • pp.419-424
    • /
    • 2021
  • Cold-induced norepinephrine activates β3-adrenergic receptors (β3-AR) to stimulate the kinase cascade and cAMP-response element-binding protein, leading to the induction of thermogenic gene expression including uncoupling protein 1 (Ucp1). Here, we showed that stimulation of the β3-AR by its agonists isoproterenol and CL316,243 in adipocytes increased the expression of Ucp1 and Heme Oxygenase 1 (Hmox1), the principal Nrf2 target gene, suggesting the functional interaction of Nrf2 with β3-AR signaling. The activation of Nrf2 by tert-butylhydroquinone and reactive oxygen species (ROS) production by glucose oxidase induced both Ucp1 and Hmox1 expression. The increased expression of Ucp1 and Hmox1 was significantly reduced in the presence of a Nrf2 chemical inhibitor or in Nrf2-deleted (knockout) adipocytes. Furthermore, Nrf2 directly activated the Ucp1 promoter, and this required DNA regions located at -3.7 and -2.0 kb of the transcription start site. The CL316,243-induced Ucp1 expression in adipocytes and oxygen consumption in obese mice were partly compromised in the absence of Nrf2 expression. These data provide additional insight into the role of Nrf2 in β3-AR-mediated Ucp1 expression and energy expenditure, further highlighting the utility of Nrf2-mediated thermogenic stimulation as a therapeutic approach to diet-induced obesity.

Effects of Dyglomera® on leptin expression, pro-inflammatory cytokines, and adipocyte browning in 3T3-L1 cells

  • Da-Eun Min;Sung-Kwon Lee;Hae Jin Lee;Bong-Keun Choi;Dong-Ryung Lee
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.186-196
    • /
    • 2023
  • Dyglomera® is an aqueous ethanol extract derived from the fruit and pods of Dichrostachys glomerata. A previous study has revealed that Dyglomera regulates adipogenesis and lipolysis by modulating AMP-activated protein kinase (AMPK) phosphorylation and increased expression levels of lipolysis-related proteins in white adipose tissue of high fat diet-induced mice and 3T3-L1 adipocyte cells. To further investigate mechanisms of Dyglomera, additional studies were performed using 3T3-L1 cells. Results revealed that Dyglomera downregulated adipogenesis by inhibiting the protein kinase B/mammalian target of rapamycin signaling pathway and reconfirmed that it downregulated gene expression levels of proliferator-activated receptor (PPAR)-γ, CCAAT enhancer binding protein α, sterol-regulation element-binding protein-1c. Dyglomera also reduced adipokines such as tumor necrosis factor alpha, interleukin-1β, and interleukin 6 by regulating leptin expression. Moreover, Dyglomera promoted beige-and-brown adipocyte-related phenotypes and regulated metabolism by increasing mitochondrial number and expression levels of genes such as T-box protein 1, transmembrane protein 26, PR domain 16, and cluster of differentiation 40 as well as thermogenic factors such as uncoupling protein 1, proliferator-activated receptor-gamma co-activator-1α, Sirtuin 1, and PPARα through AMPK activation. Thus, Dyglomera not only can inhibit adipogenesis, but also can promote lipolysis and thermogenesis and regulate metabolism by affecting adipokine secretion from 3T3-L1 adipocytes.

Caffeine Indirectly Activates Ca2+-ATPases in the Vesicles of Cardiac Junctional Sarcoplasmic Reticulum

  • Kim, Young-Kee;Cho, Hyoung-Jin;Kim, Hae-Won
    • BMB Reports
    • /
    • 제29권1호
    • /
    • pp.22-26
    • /
    • 1996
  • Agents that activate or inhibit the $Ca^{2+}$ release channel in cardiac sarcoplasmic reticulum (SR) were tested for their abilities to affect the activity of the SR $Ca^{2+}$-ATPase. Vesicles of junctional SR (heavy SR, HSR) from terminal cisternae were prepared from porcine cardiac muscle by density gradient centrifugation. The steady-state activity of $Ca^{2+}$-ATPases in intact HSR vesicles was/$347{\pm}5\;nmol/min{\cdot}mg$ protein (${\pm}$ SD). When the HSR vesicles were made leaky, the activity was increased to $415{\pm}5\;nmol/min{\cdot}mg$ protein. This increase is probably due to the uncoupling of HSR vesicles. Caffeine (10 mM), an agonist of the SR $Ca^{2+}$ release channel, increased $Ca^{2+}$-ATPase activity in the intact HSR vesicle preparation to $394{\pm}30\;nmol/min{\cdot}mg$ protein. However, caffeine had no significant effect in the leaky vesicle preparation and in the purified $Ca^{2+}$-ATPase preparation. The effect of caffeine on SR $Ca^{2+}$-ATPase was investigated at various concentrations of $Ca^{2+}$. Caffeine increased the pump activity over the whole range of $Ca^{2+}$ concentrations, from $1\;{\mu}M$ to $250\;{\mu}M$, in the intact HSR vesicles. When the SR $Ca^{2+}$-ATPase was inhibited by thapsigargin, no caffeine effect was observed. These results imply that the caffeine effect requires the intact vesicles and that the increase in $Ca^{2+}$-ATPase activity is not due to a direct interaction of caffeine with the enzyme. We propose that the activity of SR $Ca^{2+}$-ATPase is linked indirectly to the activity of the $Ca^{2+}$ release channel (ryanodine receptor) and may depend upon the amount of $Ca^{2+}$ released by the channels.

  • PDF

부자${\cdot}$파두${\cdot}$대황${\cdot}$석고 추출물의 UCP 발현에 미치는 영향 (Effects of Buja${\cdot}$Padu${\cdot}$Daehwang${\cdot}$Seokgo Extract on UCPs Expression in Mice)

  • 권강범;김은경;김인섭;황태옥;이시우;이수경;최진영;금경수
    • 동의생리병리학회지
    • /
    • 제21권6호
    • /
    • pp.1407-1410
    • /
    • 2007
  • We designed to investigate the relationship the cold-hot theory of herbology and body temperature in experimental model. we prepared four kinds of oriental medicine, which consisted of two cold herbs, Daehwang and Seokgo, and two hot herbs, Buja and Padu. Decrease of body temperature by cold exposure for 12 hour was not inhibited by four herbs oral administration for two weeks. Thermogenesis in mammals is an essential physiological function to maintain the body temperature. Mitochondrial uncoupling proteins(UCPs), which have a potential to generate heat by uncoupling oxidative phosphorylation, apper to play a crucial role in thermogenesis. Therefore UCP is commonly recognized as a key molecule in metabolic thermogenesis and its dysfunction contributes to the development of obesity. In these experiments, Daehwang water extracts inhibited the UCP1 mRNA expression increase by cold exposure in brown adipose tissue. But other herbs did not significantly influence on UCPs mRNA expression in white adipose tissue and seleus muscle tissue. Based on this experiment, we will try to clarify the effects of Daehwang water extracts on UCP1 expression and function.

Structural Conservation and Food Habit-related Liver Expression of Uncoupling Protein 2 Gene in Five Major Chinese Carps

  • Liao, Wan-Qin;Liang, Xu-Fang;Wang, Lin;Fang, Ling;Lin, Xiaotao;Bai, Junjie;Jian, Qing
    • BMB Reports
    • /
    • 제39권4호
    • /
    • pp.346-354
    • /
    • 2006
  • The full-length cDNA of grass carp (Ctenopharyngodon idellus) and silver carp (Hypophthalmichthys molitrix) uncoupling protein 2 (UCP2) was obtained from liver. The grass carp UCP2 cDNA was determined to be 1152 bp in length with an open reading frame that encodes 310 amino acids. Five introns (Intron 3, 4, 5, 6 and 7) in the translated region, and partial sequence of Intron 2 in the untranslated region of grass carp UCP2 gene were also obtained. Gene structure comparison between grass carp and mammalian (human and mouse) UCP2 gene shows that, the UCP2 gene structure of grass carp is much similar to that of human and mouse. Partial UCP2 cDNA sequences of bighead carp (Aristichthys nobilis) and mud carp (Cirrhinus molitorella), were further determined. Together with the common carp (Cyprinus carpio) UCP2 sequence from GenBank (AJ243486), multiple alignment result shows that the nucleotide and amino acid sequences of the UCP2 gene, were highly conserved among the five major Chinese carps that belong to four subfamilies. Using beta-actin as control, the ratio UCP2/beta-actin mRNA (%) was determined to be $149.4{\pm}15.6$ (common carp), $127.4{\pm}22.1$ (mud carp), $96.7{\pm}12.7$ (silver carp), $94.1{\pm}26.8$ (bighead carp) and $63.7{\pm}16.2$ (grass carp). The relative liver UCP2 expression of the five major Chinese carps, shows a close relationship with their food habit: benthos and detrituseating fish (common carp and mud carp) > planktivorious fish (silver carp and bighead carp) > herbivorious fish (grass carp). We suggest that liver UCP2 might be important for Chinese carps to detoxify cyanotoxins and bacteria in debris and plankton food.

AMPK/Sirt1/PGC-1α 신호 전달 경로의 조절을 통한 오미자 추출물의 비만 개선 효과 (Anti-Obesity Effect of Schizandrae Fructus Water Extract through Regulation of AMPK/Sirt1/PGC-1α signaling pathway)

  • 이세희;박해진;신미래;노성수
    • 대한본초학회지
    • /
    • 제37권2호
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives : Although the anti-obesity effect of Schizandrae Fructus water extract has been demonstrated, its underlying mechanism is still unclear. Therefore, we aimed to evaluate the anti-obesity effect of Schizandrae Fructus water extract through the p-AMP-activated protein kinase (p-AMPK), sirtuin1 (Sirt1), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in 60% high-fat diet (HFD)-induced obese mouse model. Methods : Male C57BL/6 mice were divided into four groups. The Normal group was fed a normal diet and the obese groups were fed 60% HFD. Except for the Control group, the GG group was supplemented with 0.5% Garcinia gummigutta and the SCW group was supplemented with 0.5% Schizandrae Fructus water extract. After 6 weeks, obesity-related biomarkers in serum were measured and the expressions of protein for lipid-related factors in liver tissue were analyzed by western blot. Results : Treatment with SCW significantly down-regulated body weight compared to the Control group. SCW down-regulated levels of triglyceride and total cholesterol in serum and significantly increased p-AMPK, Sirt1, and PGC-1α in liver tissue. In addition, the expressions of fatty acid oxidation-related proteins such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A (CPT-1A), uncoupling protein 1 (UCP1), and uncoupling protein 3 (UCP3) were significantly up-regulated. However, fatty acid synthesis-related proteins including sterol regulatory element-binding protein-1 (SREBP-1), phospho-Acetyl-CoA Carboxylase (p-ACC), and fatty acid synthase (FAS) were significantly down-regulated. Conclusions : Taken together, SCW treatment showed anti-obesity effect by regulating both fatty acid oxidation-related and fatty acid synthesis-related proteins through AMPK/Sirt1/PGC-1α signaling in 60% HFD-induced obese mice.

Polymorphisms in the uncoupling protein 3 gene and their associations with feed efficiency in chickens

  • Jin, Sihua;Yang, Lei;He, Tingting;Fan, Xinfeng;Wang, Yiqiu;Ge, Kai;Geng, Zhaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권9호
    • /
    • pp.1401-1406
    • /
    • 2018
  • Objective: The uncoupling protein 3 (UCP3) is a member of the mitochondrial anion carrier superfamily and has crucial effects on growth and feed efficiency in many species. Therefore, the objective of the present study was to examine the association of polymorphisms in the UCP3 gene with feed efficiency in meat-type chickens. Methods: Six single nucleotide polymorphisms (SNPs) of the UCP3 gene were chosen to be genotyped using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry in meat-type chicken populations with 724 birds in total. Body weight at 49 (BW49) and 70 days of age (BW70) and feed intake (FI) in the interval were collected, then body weight gain (BWG) and feed conversion ratio (FCR) were calculated individually. Results: One SNP with a low minor allele frequency (<1%) was removed by quality control and data filtering. The results showed that rs13997809 of UCP3 was significantly associated with BWG and FCR (p<0.05), and that rs13997811 had significant effects on BW70 and BWG (p<0.05). Rs13997812 of UCP3 was strongly associated with BW70, FI, and FCR (p<0.05). Furthermore, individuals with AA genotype of rs13997809 had significantly higher BWG and lower FCR (p<0.05) than those with AT genotype. The GG individuals showed strongly higher BW70 and BWG than AA birds in rs13997811 (p<0.05). Birds with the TT genotype of rs13997812 had significantly greater BW70 and lower FCR compared with the CT birds (p<0.05). In addition, the TAC haplotype based on rs13997809, rs13997811, and rs13997812 showed significant effects on BW70, FI, and FCR (p<0.05). Conclusion: Our results therefore demonstrate important roles for UCP3 polymorphisms in growth and feed efficiency that might be used in meat-type chicken breeding programs.