• Title/Summary/Keyword: Uncoupling Protein 3

Search Result 58, Processing Time 0.027 seconds

The Effect of Conjugated Linoleic Acid Isomers on the Cell Proliferation, Apotosis and Expressions of Uncoupling Protein (Ucp) Genes during Differentiation of 3T3-L1 Preadipocytes (Conjugated Linoleic Acid 이성체가 3T3-L1 지방전구세포 분화중 세포증식, 세포사멸 및 Ucp 유전자 발현에 미치는 영향)

  • Kwon So-Young;Kang Keum-Jee
    • Journal of Nutrition and Health
    • /
    • v.37 no.7
    • /
    • pp.533-539
    • /
    • 2004
  • It has been reported that CLA decreases fat deposition in vivo and in vitro experiments. Among CLA isomers, c9t11 and t10c12 have been shown to exert active biological activities. For example, t10c12 reduces body weight and increases lean body mass, whereas, c9t11 has little effect on body fattness. However, the underlying molecular mechanism for the anti-obesity action of CLA isomers are not well understood. The purpose of this study was to examine the effects of t10c12 and c9t11 on lipid accumulation, cell proliferation, cell death and the expression levels of Ucp genes which are proposed as targets for anti-obesity in 3T3-L1 preadipocytes. Isomers of CLA at 50$\mu$M were added into preadipocyte differentiation medium for 3, 6 and 9days. Control cells received only the vehicle in the differentiation medium. Cytochemical analyses for lipid accumulation, cell proliferation and apotosis were carried out to compare lipidogenesis and cellular activity. RT-PCR analysis of GAPDH, Ucp 2,3 and 4 were also performed to find any modulatory effects of CLA isomers on the metabolic genes. Lipid accumulation indicated by Oil Red-O staining was inhibited in CLA isomers as compared to the control. T10c12 isomer showed less lipidogenesis than c9t11 did. A decrease occurred in CLA isomers as shown by BrdU incorporation. Apotosis has occured at higher level in t10c12 when compared to that of t9c11. Ucp 2, 3 and 4 genes were also upregulated in CLA isomers. T10c12 showed higher level of Ucp gene expressions than the c9t11 did. The biological activities of CLA isomers were also found to be different during differentiation of 3T3-L1 preadipocytes, suggesting that different isomers may be active in certain stage of lipidogenesis. The results indicate that both c9t11 and t10c12 CLA isomers decrease lipidogenesis, inhibit cell proliferation, increase cell death and upregulate in Ucp gene expressions during 3T3-L1 preadipocyte differentiation. T10c12 isomer was more effective than c9t11 in overall anti-obesity activity.

The effects of Allomyrina dichotoma larval extract on palmitate-induced insulin resistance in skeletal muscle cells (장수풍뎅이 유충 추출물이 고지방산 처리 골격근세포의 인슐린 저항성에 미치는 영향)

  • Kim, Kyong;Sim, Mi-Seong;Kwak, Min-Kyu;Jang, Se-Eun;Oh, Yoon Sin
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.462-475
    • /
    • 2022
  • Purpose: Allomyrina dichotoma larvae are one of the approved edible insects with nutritional value and various functional and medicinal properties. Previously we have demonstrated that the Allomyrina dichotoma larval extract (ADLE) ameliorates hepatic insulin resistance in high-fat diet (HFD)-induced diabetic mice through the activation of adenosine monophosphate-activated protein kinase (AMPK). This study investigated the effects of ADLE on insulin resistance in the skeletal muscle and explored mechanisms for enhancing the glucose uptake in palmitate (PAL)-treated C2C12 myotubes. Methods: To induce insulin resistance, the differentiated C2C12 myotubes were treated with PAL (0.5 mM) for 24 hours, and then treated with a 0.5 mg/ml concentration of ADLE, and the resultant effects were measured. The expression levels of glucose transporter-4 (GLUT4), AMPK, and the mitochondrial metabolism-related proteins were analyzed by western blotting. The mRNA expression levels of lipogenesis- related genes were determined by quantitative reverse-transcriptase PCR. Results: The exposure of C2C12 myotubes to 0.5 mg/ml of ADLE increased cell viability significantly compared to PAL-treated cells. ADLE upregulated the protein expression of GLUT4 and enhanced glucose uptake in the PAL-treated cells. ADLE increased the phosphorylated AMPK in both the PAL-treated C2C12 myotubes and HFD-treated skeletal muscle. The reduced expression levels of peroxisome-proliferator-activated receptor gamma co-activator-1 alpha (PGC1α) and uncoupling protein 3 (UCP3) due to the PAL and HFD treatment were reversed by the ADLE treatment. The citrate synthase activity was also significantly increased with the PAL and ADLE co-treatment. Moreover, the mRNA and protein expressions of fatty acid synthesis-related factors were reduced in the PAL and HFD-treated muscle cells, and this effect was significantly attenuated by the ADLE treatment. Conclusion: ADLE activates AMPK, which in turn induces mitochondrial metabolism and reduces fatty acid synthesis in C2C12 myotubes. Therefore, ADLE could be useful for preventing or treating insulin resistance of skeletal muscles in diabetes.

Anti-obesity Effects of Wolbi-tang(越婢湯) on the Obese-mice Induced by High-fat Diet (월비탕(越婢湯)이 고지방식이(高脂肪食餌)로 유도된 비만 생쥐에 미치는 영향)

  • Park, Ji-Hyun;Hong, Seo-Young
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.31-48
    • /
    • 2011
  • Objectives : In order to investigate the anti-obesity effects of Wolbi-tang(here in after referred to WBT) on the obese gene and obese inhibitory, C57BL/6 mice were induced by high-fat diet. Methods : C57BL/6 mice were divided into 5 groups(normal, only high-fat diet, high-fat diet with Reductil, high-fat diet with WBT 400, 200 mg/kg extract) and fed for 5 weeks. And observed body weight change, total cholesterol, low density lipoprotein cholesterol(LDL-cholesterol), high density lipoprotein cholesterol (HDL-cholesterol), triglyceride, glucose, leptin change, alanine transaminase(ALT), aspartate transaminase(AST), serum creatinine, the expression of ${\beta}3$-adrenergic receptor(${\beta}3AR$), leptin, uncoupling protein(UCP2) gene in 3T3-L1 adipocyte, 3T3-L1 adipocyte proliferation, histological analysis of adipose tissue and liver tissue. Results : 1. Refer to cell cytotoxicity, viability of human fibroblast cells(hFCs) showed not significant changes. 2. The amount of ALT, AST was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. The amount of creatinine showed not significant changes. 3. Body weight was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. 4. The amount of total cholesterol and triglyceride was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. LDL-cholesterol was decreased and HDL-cholesterol was increased significantly in WBT 400 mg/kg groups. 5. The amount of glucose was decreased significantly in WBT 400 mg/kg groups. 6. The amount of serum leptin was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. 7. The revelation of ${\beta}3AR$ in 3T3-L1 adipocyte was increased significantly in WBT $100{\mu}g/ml$, $50{\mu}g/ml$ groups. The revelation of leptin was decreased significantly in WBT $100{\mu}g/ml$, $50{\mu}g/ml$ groups. The revelation of UCP2 was decreased significantly in WBT $100{\mu}g/ml$ group. 8. 3T3-L1 adipocyte proliferation was decreased significantly in WBT $100{\mu}g/ml$, $50{\mu}g/ml$ groups. The size of adipocyte was decreased relative to the control group in WBT 400 mg/kg group. 9. The adipose vacuoles in liver tissue was decreased relative to the control group. Conclusions : These results suggested that WBT has inhibitory effects of obesity. WBT might be applicated on treatment of obesity and metabolic syndrome. Further studies analysing its effects were needed.

Molecular biologic mechanism of obesity by GGEx18 (경신강지환(輕身降脂丸)18의 분자생물학적인 비만조절 기전에 관한 연구)

  • Lee, Hee-Young;Yoon, Ki-Hyeon;Seo, Bu-Il;Park, Gyu-Ryeol;Yoon, Mi-Chung;Shen, Zhi-Bin;Cui, Hong-Hua;Shin, Soon-Shik
    • The Korea Journal of Herbology
    • /
    • v.26 no.1
    • /
    • pp.65-74
    • /
    • 2011
  • Objectives : This study was undertaken to verify the modulation mechanism of Gyeongshingangjeehwan18 (GGEx18) in ob/ob male mice. Methods : Eight-week old mice (wild-type C57BL/6J and ob/ob) were used for all experiments. Wild-type C57BL/6J mice were used as lean control and obese ob/ob mice were randomly divided into 5 groups : obese control, GGEx15 (Ephedra sinica Stapf + Rheum palmatum L.), GGEx16 (Ephedra sinica Stapf + Laminaria japonica Aresch), GGEx17 (Rheum palmatum L. + Laminaria japonica Aresch), and GGEx18 (Ephedra sinica Stapf + Laminaria japonica Aresch + Rheum palmatum L.). After mice were treated with several kinds of GGEx for 11 weeks, the mRNA expression of peroxisome proliferator-activated receptor (PPAR) target genes and uncoupling protein (UCP) were measured. In addition, $PPAR{\alpha}$ and $PPAR{\beta}$ transactivation was examined in NMu2Li hepatocytes, C2C12 myocytes, and 3T3-L1 preadipocytes using transient transfection assays. Results : 1. Hepatic $PPAR{\alpha}$ target genes, such as ACOX and VLCAD mRNA levels were significantly increased by GGEx18 compared with obese controls. In skeletal muscle, LCAD mRNA expression was stimulated by GGEx16, GGEx17, and GGEx18, whereas MCAD mRNA expression by GGEx17 and GGEx18. $PPAR{\beta}$ target LPL mRNA levels were also increased by GGEx16, GGEx17, and GGEx18 in skeletal muscle, but adipose LPL mRNA levels were decreased. In addition, GGEx18 upregulated UCP mRNA expression in skeletal muslce. 2. $PPAR{\alpha}$ reporter gene expression was increased by GGEx18 in NMu2Li cells compared with vehicle. $PPAR{\alpha}$ and $PPAR{\beta}$ reporter activities were also increased by all GGEx treatments in C2C12 and 3T3-L1 cells. Conclusions : These results suggest that GGEx can act as $PPAR{\alpha}$ and $PPAR{\beta}$ activators, and that GGEx may regulate obesity by stimulating $PPAR{\alpha}$, $PPAR{\beta}$, and UCP activity. Of the 4 compositions, GGEx18 seems to be most effective in improving obesity and lipid disorders.

Effects of ethanol extract of Polygonatum sibiricum rhizome on obesity-related genes (황정 에탄올 추출물의 비만 조절 유전자에 대한 효과)

  • Jeon, Woo-Jin;Lee, Do-Seop;Shon, Suh-Youn;Seo, Yun-Ji;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.384-391
    • /
    • 2016
  • In previous studies, we confirmed that the ethanol extract of Polygonatum sibiricum (ID1216) has anti-obesity effects on high-fat diet-fed mice. To identify the obesity-related genes affected by ID1216, we studied its effects both in vivo and in vitro. In mice, single administration of ID1216 increased the expression of obesity-related genes including sirtuin1 (SIRT1), peroxisome proliferator-activated receptor ${\gamma}$ coactivator $1{\alpha}$ ($PGC1{\alpha}$) and peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) compared to that in mice administered the vehicle; their downstream genes (uncoupling proteins, acyl-CoA oxidase, adipocyte protein 2, and hormone-sensitive lipase) were also increased by ID1216. In fully differentiated 3T3-L1 adipocytes, ID1216 showed the same effects on anti-obesity genes as those in the animal model. Based on these results, we propose that ID1216 has anti-obesity effects by regulating the $SIRT1-PGC1{\alpha}-PPAR{\alpha}$ pathway and their downstream genes, thereby controlling energy and lipid metabolisms.

The Relationships between UCP-1 Polymorphism and the Degree of Obesity or Plasma Lipid Profile in Prepubertal Children (소아에서의 UCP-1 다형성과 비만도 및 혈액 지질수치와의 관련성에 관한 연구)

  • Oh, Hyun-Hee;Shin, Eun-Jung;Lee, Myoung-Sook
    • Journal of Nutrition and Health
    • /
    • v.41 no.8
    • /
    • pp.767-775
    • /
    • 2008
  • Uncoupling protein-1 (UCP-1) plays a major role in thermogenesis at brown adipose tissues and has been implicated in the pathogenesis of obesity and metabolic disorders. The purpose of this study was to estimate the effects of A-3826G polymorphism in 117 Korean prepubertal children aged 8-11 years olds. Anthropometry by bioelectrical impedance analysis method, plasma lipid profiles by auto-biochemical analyzer and UCP-1 genotyping by PCR-RFLP were done. The frequencies of UCP-1 genotypes were AA; 17.7%, AG; 57.8%, GG; 26.6%. The frequencies of each G allele (55.5%) was similar to Japanese's (49%) and higher than Caucacian's (25%). No correlation UCP-1 polymorphism and BMI (kg/$m^2$) or the degree of obesity described by the relative percentiles of the standard weight according to height in prepubertal children. However, plasma total- and LDL-cholesterol were significantly increased in G allele when sex, age and weight were adjusted. Our results suggested that G allele of UCP-1 gene was stronger risk factors in hyperLDLcholesterolemia than A allele. This impact might be progressed as the precaution against the revalence of obesity based-metabolic disease.

Effects of Low Level of Levan Feeding on Serum Lipids, Adiposity and UCP Expression in Rats (저농도 레반 공급이 혈중 지질 및 체지방 형성과 UCP 발현에 미치는 영향)

  • 강순아;홍경희;장기효;김소혜;조여원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.5
    • /
    • pp.788-795
    • /
    • 2002
  • This study described the effect of levan (9-2,6-linked fructose polymer) feeding on serum lipids, adiposity and uncoupling protein (UCP) expression in growing rats. Levan was synthesized from sucrose using bacterial levansucrase. UCP is a mitochondrial protein that uncouples the respiratory chain from oxidative Phosphorylation and generates heat instead of ATP, thereby increase energy expenditure. We observed that 3% or 5% levan containing diet reduced serum triglyceride levels, visceral and peritoneal fat mass and induced the UCP expression in rats fed high fat diet in previous study. To determine whether the intake of low level of levan may have the hypolipidemic and anti-obesity effect, 4 wk old Sprague Dawley male rats were fed AIN-76A diet for 6 wk, and sub-sequently fed 1% or 2% levan solution for further 5 wk. Intake of 1% levan in liquid form reduced serum triglyceride and serum total cholesterol levels to 50% and 66% of control group, respectively. Although epididymal and peritoneal fat masses were not affected by levan feeding, visceral fat mass was lower in 1% levan group compared to control group. The expression of UCP2 mRNA in brown adipose tissue, skeletal muscle and hypothalamus and UCP3 mRNA in skeletal muscle were not changed by levan feeding, while the UCP2 mRNA in white adipose tissue was up-regulated by levan feeding. In conclusions, intake of low level of levan solution reduced serum triglyceride and total cholesterol, restrained the visceral fat accumulation and increased UCP expression in white adipose tissue in rats. This study suggests that hypolipidemic and anti-obesity effect of levan attributed to anti-lipogenesis and inefficeint energy utilization by up-regulation of UCPs.

Effects of Sinetrol-XPur on Leptin-Deficient Obese Mice and Activation of cAMP-Dependent UCP-2 (Leptin 유전자 결핍 동물모델을 이용한 시네트롤(Sinetrol-XPur)의 항비만 효과와 cAMP를 통한 UCP-2 활성화 기전 연구)

  • Yoo, Jae Myeong;Lee, Minhee;Kwon, Han Ol;Choi, Sei Gyu;Bae, Mun Hyoung;Kim, Ok-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.484-491
    • /
    • 2016
  • The present study investigated the effect of Sinetrol-XPur (polyphenolic Citrus spp. and Paullinia cupana Kunth dry extract) and defined the action mode for cyclic adenosine monophosphate (cAMP)-dependent uncoupling protein (UCP)-2 activation. Leptin-deficient obese mice were treated with two different doses, 100 mg/kg body weight (BW) and 300 mg/kg BW of each AIN93G supplement, for 7 weeks. Treatment of obese mice with both low and high doses of Sinetrol-XPur significantly reduced body weight gain compared to control obese mice. White adipose tissue weight of mice was reduced by 30.96% in high dose-supplemented groups. Serum total cholesterol and triglyceride were reduced by a high dose of Sinetrol-XPur by 20.02% and 30.96%, respectively. Serum level of high density lipoprotein (HDL) was significantly increased by treatment with both doses, as the ratio of HDL to low density lipoprotein increased by 138.78% and 171.49%, respectively. Regarding expression of biochemical factors related to lipid metabolism, fatty acid synthase significantly decreased and UCP-2 increased upon treatment with a high dose of Sinetrol-XPur, but there was no significant difference in lipoprotein lipase and hormone-sensitive lipase. To define cellular mechanism, intracellular cAMP levels in 3T3-L1 adipocytes significantly increased in a dose-dependent manner over the range of $50{\sim}250{\mu}m/mL$. The phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine clearly blocked cAMP, suggesting that Sinetrol-XPur promotes lipolysis of adipocytes through inhibition of cAMP-dependent PDE, resulting in induction of cAMP response element binding protein and UCP-2. These results suggest that Sinetrol-XPur supplementation is a viable option for reducing body weight and fat by improving serum lipid profiles and genetic expression of lipid metabolic factors, especially activation of cAMP-dependent UCP-2.