• Title/Summary/Keyword: Unconstrained

Search Result 386, Processing Time 0.029 seconds

Joint Optimization for Residual Energy Maximization in Wireless Powered Mobile-Edge Computing Systems

  • Liu, Peng;Xu, Gaochao;Yang, Kun;Wang, Kezhi;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5614-5633
    • /
    • 2018
  • Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) are both recognized as promising techniques, one is for solving the resource insufficient of mobile devices and the other is for powering the mobile device. Naturally, by integrating the two techniques, task will be capable of being executed by the harvested energy which makes it possible that less intrinsic energy consumption for task execution. However, this innovative integration is facing several challenges inevitably. In this paper, we aim at prolonging the battery life of mobile device for which we need to maximize the harvested energy and minimize the consumed energy simultaneously, which is formulated as residual energy maximization (REM) problem where the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device are all considered as key factors. To this end, we jointly optimize the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device to solve the REM problem. Furthermore, we propose an efficient convex optimization and sequential unconstrained minimization technique based combining method to solve the formulated multi-constrained nonlinear optimization problem. The result shows that our joint optimization outperforms the single optimization on REM problem. Besides, the proposed algorithm is more efficiency.

Deep Learning based Human Recognition using Integration of GAN and Spatial Domain Techniques

  • Sharath, S;Rangaraju, HG
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.127-136
    • /
    • 2021
  • Real-time human recognition is a challenging task, as the images are captured in an unconstrained environment with different poses, makeups, and styles. This limitation is addressed by generating several facial images with poses, makeup, and styles with a single reference image of a person using Generative Adversarial Networks (GAN). In this paper, we propose deep learning-based human recognition using integration of GAN and Spatial Domain Techniques. A novel concept of human recognition based on face depiction approach by generating several dissimilar face images from single reference face image using Domain Transfer Generative Adversarial Networks (DT-GAN) combined with feature extraction techniques such as Local Binary Pattern (LBP) and Histogram is deliberated. The Euclidean Distance (ED) is used in the matching section for comparison of features to test the performance of the method. A database of millions of people with a single reference face image per person, instead of multiple reference face images, is created and saved on the centralized server, which helps to reduce memory load on the centralized server. It is noticed that the recognition accuracy is 100% for smaller size datasets and a little less accuracy for larger size datasets and also, results are compared with present methods to show the superiority of proposed method.

Improvement on optimal design of dynamic absorber for enhancing seismic performance of nuclear piping using adaptive Kriging method

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1712-1725
    • /
    • 2022
  • For improving the seismic performance of the nuclear power plant (NPP) piping system, attempts have been made to apply a dynamic absorber (DA). However, the current piping DA design method is limited because it cannot provide the globally optimum values for the target design seismic loading. Therefore, this study proposes a seismic time history analysis-based DA optimal design method for piping. To this end, the Kriging approach is introduced to reduce the numerical cost required for seismic time history analyses. The appropriate design of the experiment method is used to increase the efficiency in securing response data. A gradient-based method is used to efficiently deal with the multi-dimensional unconstrained optimization problem of the DA optimal design. As a result, the proposed method showed an excellent response reduction effect in several responses compared to other optimal design methods. The proposed method showed that the average response reduction rate was about 9% less at the maximum acceleration, about 5% less at the maximum value of the response spectrum, about 9% less at the maximum relative displacement, and about 4% less at the maximum combined stress compared to existing optimal design methods. Therefore, the proposed method enables an effective optimal DA design method for mitigating seismic response in NPP piping in the future.

Structural optimal control based on explicit time-domain method

  • Taicong Chen;Houzuo Guo;Cheng Su
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.607-620
    • /
    • 2023
  • The classical optimal control (COC) method has been widely used for linear quadratic regulator (LQR) problems of structural control. However, the equation of motion of the structure is incorporated into the optimization model as the constraint condition for the LQR problem, which needs to be solved through the Riccati equation under certain assumptions. In this study, an explicit optimal control (EOC) method is proposed based on the explicit time-domain method (ETDM). By use of the explicit formulation of structural responses, the LQR problem with the constraint of equation of motion can be transformed into an unconstrained optimization problem, and therefore the control law can be derived directly without solving the Riccati equation. To further optimize the weighting parameters adopted in the control law using the gradient-based optimization algorithm, the sensitivities of structural responses and control forces with respect to the weighting parameters are derived analytically based on the explicit expressions of dynamic responses of the controlled structure. Two numerical examples are investigated to demonstrate the feasibility of the EOC method and the optimization scheme for weighting parameters involved in the control law.

Mechanical deterioration and thermal deformations of high-temperature-treated coal with evaluations by EMR

  • Biao Kong;Sixiang Zhu;Wenrui Zhang;Xiaolei Sun;Wei Lu;Yankun Ma
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.233-244
    • /
    • 2023
  • With the increasing amount of resources required by the society development, mining operations go deeper, which raises the requirements of studying the effects of temperature on the physical and mechanical properties of coal and adjacent rock. For now, these effects are yet to be fully revealed. In this paper, a mechanical-electromagnetic radiation (EMR) test system was established to understand the mechanical deterioration characteristics of coal by the effect of thermal treatment and its deformation and fracture characteristics under thermo-mechanical coupling conditions. The mechanical properties of high-temperature-treated coal were analyzed and recorded, based on which, reasons of coal mechanical deterioration as well as the damage parameters were obtained. Changes of the EMR time series under unconstrained conditions were further analyzed before characteristics of EMR signals under different damage conditions were obtained. The evolution process of thermal damage and deformation of coal was then analyzed through the frequency spectrum of EMR. In the end, based on the time-frequency variation characteristics of EMR, a method of determining combustion zones within the underground gasification area and combustion zones' stability level was proposed.

Application of the explicit time integration finite element method to quasi-static metal forming problems (금속 성형 공정의 준정적 변형 예측을 위한 외연적 시간 적분 유한 요소법의 적용에 대한 연구)

  • Yoo, Y.H.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.53-63
    • /
    • 1995
  • In the analysis of metal forming problems, the explicit time integration finite element method, which does not have convergence problems, is frequently used. The present work is to assess the applicability of the explicit time integration finite element method to quasi-static metal forming problems. Compressing analyses of thin-walled tubes and solid cylinders are performed with different loading velocities. The computed buckled profiles of thin walled tubes are compared with the theoretical and experimental ones and it is found that at sufficiently low loading velocity, the explicit time integration finite element method accurately predict quasi-static buckled profiles. When loading volocity is increased, the computed buckled profiles of thin-walled tubes are very sensitive to loading velocity however the computed profiles of solid cylinders are less sensitive to loading velocity. In orther words, the geometrically self-constrained specimens like solid cylinders are less sensitive to loading velocity than the geometrically unconstrained specimens like thin-walled tubes. As a result, it is found that the geometrically self-constrained problems which include the greater part of metal forming problems can be efficiently analyzed with loading velocity control technique.

  • PDF

Elastic distortional buckling of cold-formed steel Z-Beams with stiffened holes using reduced thickness

  • Nasam S. Khater;Mahmoud H. El-Boghdadi;Nashwa M. Yossef
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.225-241
    • /
    • 2024
  • For several reasons, cold-formed steel (CFS) beams are often manufactured with holes. Nevertheless, because of holes, the reduction in the web area causes a decrease in the bending strength. Edge stiffeners are presently added around the holes to improve the bending strength of flexural members. Therefore, this research studies CFSZ-beams with stiffened holes and investigates how edge stiffener affects bending strength and failure modes. Nonlinear analysis was carried out using ABAQUS software and the developed finite element (FE) model was verified against tests from previous studies. Using the verified FE model, a parametric study of 104 FE models was conducted to investigate the influence of key parameters on bending strength of Z- sections. The results indicated that the effect of holes is less noticeable in very thin Z-sections. Moreover, adding edge stiffeners around the holes improves the flexural capacity of Z-beams and sometimes restores the original bending capacity. Because the computational techniques used to solve the CFS buckling mode with stiffened holes are still unclear, a numerical method using constrained and unconstrained finite strip method (CUFSM) software was proposed to predict the elastic distortional buckling moment for a wide variety of CFSZ-sections with stiffened holes. A numerical method with two procedures was applied and validated. Upon comparison, the numerical method accurately predicted the distortional buckling moment of CFS Z-sections with stiffened holes.

Optimal Strengthening in RC Hollow Slab Bridges Using External Prestressing (외부 프리스트레싱을 이용한 RC 중공슬래브교의 최적보강)

  • Park, Kyung-Sik;Choi, Se-Hyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.204-211
    • /
    • 2009
  • In this study, the optimal method is applied to strengthening of RC hollow slab bridges using external prestressing. The Queen-post and King-post shapes are considered to find the effective tendon configurations. In order to achieve the objective rating factor, the optimal configurations and tendon forces are obtained by using the Sequential Unconstrained Minimization Technique (SUMT). The object function for optimal strengthening is constituted with the dimensionless function of material costs. The constraints are formulated by design specification and the rating factor. The validity of this study is presented by the analysis of the results of strengthening of the RC hollow slab bridges.

Construction of Multiple Classifier Systems based on a Classifiers Pool (인식기 풀 기반의 다수 인식기 시스템 구축방법)

  • Kang, Hee-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.8
    • /
    • pp.595-603
    • /
    • 2002
  • Only a few studies have been conducted on how to select multiple classifiers from the pool of available classifiers for showing the good classification performance. Thus, the selection problem if classifiers on how to select or how many to select still remains an important research issue. In this paper, provided that the number of selected classifiers is constrained in advance, a variety of selection criteria are proposed and applied to tile construction of multiple classifier systems, and then these selection criteria will be evaluated by the performance of the constructed multiple classifier systems. All the possible sets of classifiers are trammed by the selection criteria, and some of these sets are selected as the candidates of multiple classifier systems. The multiple classifier system candidates were evaluated by the experiments recognizing unconstrained handwritten numerals obtained both from Concordia university and UCI machine learning repository. Among the selection criteria, particularly the multiple classifier system candidates by the information-theoretic selection criteria based on conditional entropy showed more promising results than those by the other selection criteria.

Discrete Optimum Design of Semi-rigid Steel Frames Using Refined Plastic Hinge Analysis and Genetic Algorithm (개선소성힌지해석과 유전자 알고리즘을 이용한 반강접 강골조의 이산최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Kang, Moon Myoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.201-213
    • /
    • 2004
  • A GA-based optimum design algorithm and a program for plane steel frame structures with semi-rigid connections are presented. The algorithm is incorporated with the refined plastic hinge analysis method wherein geometric nonlinearity is considered by using the stability functions of beam-column members, and material nonlinearity, by using the gradual stiffness degradation model that includes the effects of residual stresses, moment redistribution through the occurrence of plastic hinges, semi-rigid connections, and geometric imperfection of members. In the genetic algorithm, the tournament selection method and micro-GAs are employed. The fitness function for the genetic algorithm is expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions are expressed as the weight of steel frames and the constraint functions, respectively. In particular, the constraint functions fulfill the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimal design results of two plane steel frames with rigid and semi-rigid connections are compared.