• Title/Summary/Keyword: Unconsolidated ground

Search Result 30, Processing Time 0.025 seconds

Tunnel Deformation in Shallow Unconsolidated Ground by Using Strain-Softening Model (변형연화모델을 이용한 미고결 지반의 터널변형)

  • Seo, In-Shik;Kim, Byung-Tak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.81-88
    • /
    • 2007
  • In case of an urban tunnel, the displacement of ground base controls the tunnel design because it is built on shallow and unconsolidated ground many times. There are more insufficiency to describe the ground movement which coincides in the measured result of the situ because the design of an urban tunnel is dependent on the method of numerical analysis used to the existing elastic and elasto-plastic models. We studied about the prediction for the ground movement of a shallow tunnel in unconsolidated ground, mechanism of collapse, and settlement. Also this paper shows comparison with the existing elastic and elasto-plastic model using the unlinear analysis of the strain-softening model. We can model the real ground movement as the increasement of ground surface inclination or occurrence of shear band by using strain-softening model for the result of ground movement of an urban NATM tunnel.

  • PDF

A Study on Stress Redistribution Mechanism for Tunneling in an Unconsolidated Ground with Inclined Layers (미고결 층상지반에서 터널굴착시 응력재분배 메커니즘에 관한 연구)

  • Park, Si Hyun;Ahn, Sang Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.53-61
    • /
    • 2006
  • This study is aimed at to examine the stress redistribution mechanism for tunneling in an unconsolidated ground with inclined layers through model tests. To make the unconsolidated ground, two dimensional model ground is prepared with aluminum rods and blocks, which are frictional resistance free between testing apparatus walls and ground materials, by establishing the ground materials self-supporting. It is carried out to measure the ground deformation and the stress redistribution for model ground with tunneling by measuring apparatus respectively. For the ground deformation, surface settlements are measured to examine the deformation features during tunnel excavation. For the stress redistribution, the earth pressure acting on both the tunneling part and its surrounding parts is measured to examine their mutual relationship. Based on test results, precise examination is conducted on the stress redistribution mechanism in the unconsolidated ground with inclined layers during tunnel construction.

Physiographical, Geological, and Hydraulic Classification of Ground Water Occurrence in the Unconsolidated Formation, with Respect to the Economical Evaluation, in South Korea (우리나라 지하수(地下水) 부존상태(賦存狀態)의 지형학적(地形學的), 지리학적(地理學的) 유형분류(類型分類))

  • Jeong, Bong Il
    • Economic and Environmental Geology
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 1971
  • Economical evaluation of an aquifer in an unconsolidated formation is based on the physiography, geology and hydraulics in it's loci. Since each foundation is controlled by the combination of several factors, these factors in each foundation will be explained in regard to their function, contributing to the yield of ground water from aquifers.

  • PDF

A Study on Tunnel Loads in an Unconsolidated Ground with Inclined Layers (지층이 경사진 미고결 층상지반에서의 터널 작용토압에 관한 연구)

  • Park, Si Hyun;Kim, Young Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.275-282
    • /
    • 2006
  • Since tunnels are linear type structures that have a long extent in comparison to their excavation or inner section, tunnels must be constructed in various ground conditions. In this study, laboratory model tests and theoretical analysis on a tunnel loads are carried out in the unconsolidated ground with inclined layers for tunnel excavation. Laboratory model tests are performed with the variation in the angle of the inclined layers and tunnel depth for the model ground with inclined layers. As for the ground materials, two dimensional model ground is prepared with aluminum rods and blocks with no cohesion, which are frictional resistance free between testing apparatus walls and ground materials, by establishing the ground materials self-supporting. Moreover tunnel load equation are newly induced so that comparisons between model test results and the theoretical results are conducted as well.

A Study on the Rock Mass Classifications and Reinforcement in Unconsolidated Sedimentary Rock Tunnel (미고결 퇴적암 터널에서의 암반분류 및 보강에 관한 연구)

  • Kim, Nakryoong;Jeong, Sangseom;Ko, Junyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.655-666
    • /
    • 2013
  • A number of highway projects are in progress in Korea to accommodate increasing transportation demands. As the highway route becomes more complex, some projects include tunneling through unconsolidated sedimentary rock. Since an unconsolidated sedimentary rock mainly consists of rock and ground mass, the behavior and characteristics in unconsolidated sedimentary rock tunnel are quite different from typical rock tunnel. However, construction case histories and rock classifications method on unconsolidated sedimentary rock tunnel had not been developed or studied domestically. Consequently the case studies and rock classification system for unconsolidated sedimentary rock are required to better understand its behavior for tunneling. In this study, rock mass classification method is proposed to identify unconsolidated sedimentary rock based on point load and slake durability tests. Based on this, the proposed method of unconsolidated sedimentary rock can be applied well through comparisons with the results of convergence measurement.

Mechanism Analysis of Tunnel Collapse in Weak Ground (미고결 지반에서의 터널붕락 메커니즘 분석)

  • Lee, Jae-Ho;Jeong, Yun-Young;Kim, Young-Su;Moon, Hong-Duk
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.339-347
    • /
    • 2009
  • Despite the recent improvement in tunnel excavation technique, Tunnel collapse accidents still happen. This paper suggest two typical cases in unconsolidated ground condition. Collapse causes of each case were analyzed by the measurement records and numerical simulation, and then mechanism of tunnel collapse was investigated about each case. From this study, the crucial indicators of tunnel collapse were the variation of shear strain and ground water level, also, tunnel collapse deeply related to how shear deformation around tunnel was developed according to the excavation step.

The Prediction for Ground Movement of Urban NATM Tunnels using the Strain-softening Model (도시 NATM 터널의 변형율 연화모델을 이용한 지반거동예측)

  • Kim, Young Su;Jeong, Woo Seob;Lee, Sung Yun;Seok, Tae-Ryong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • In case of an urban tunnel, the displacement of ground base controls the tunnel design because it is built on shallow and unconsolidated ground many times. There are more insufficiency to describe the ground movement which coincides in the measured result of the situ because the design of an urban tunnel is dependent on the method of numerical analysis used to the existing elastic and elasto-plastic models. We studied about the predict ion for the ground movement of a shallow tunnel in unconsolidated ground, mechanism of collapse, and settlement. Also this paper shows comparison with the existing elastic and elasto-plastic model using the unlinear analysis of the strain-softening model. We can model the real ground movement as the increasement of ground surface inclination or occurrence of shear band by using strain-softening model for the result of ground movement of an urban NATM tunnel.

  • PDF

Deformation analysis of shallow tunneling with unconsolidated soil using nonlinear numerical modeling (비선형 수치모델링을 이용한 미고결 지반 저토피 터널의 변형해석)

  • Lee, Jae-Ho;Kim, Young-Su;Yoo, Ji-Hyeung;Jeong, Yun-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.105-116
    • /
    • 2010
  • The estimation of surface settlement, ground behavior and tunnel displacement are the main factors in urban tunnel design with shallow depth and unconsolidated soil. On deformation analysis of shallow tunnel, it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigated the effects of key design parameter affecting deformation behavior by numerical analysis using nonlinear model incorporating the reduction of shear stiffness and strength parameters with the increment of the maximum shear strain after the initiation of plastic yielding. Numerical parametric studies are carried out to consider the reduction of shear stiffness and strength parameters, horizontal stress ratio, cohesion and shotcrete thickness.

A Study on the Surface Soil Stabilization on Marine Clay by the Hardening Agent (고화재에 의한 해성점성토의 표층안정처리에 관한 연구)

  • 천병식;양진석
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.92-97
    • /
    • 2001
  • Hardening agents have been the traditional material for surface soil stabilization of soft ground. This study aims at determining the optimal mixture ratio of the hardening agent in accordance with the required design specifications. Hardening agents which consists of fly ash, gypsum, slag and cement for the ettringite hydrates is effective for early stabilization of unconsolidated soil. The raw ground material is the clay that is widely found in Korea. In this study, preliminary tests were performed to get an optimal mixture ratio of the stabilizer ingredient and marine clay from Jinhae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soils were performed to get an optimal mixture ratio for 16-stabilizer materials of 6 types, and a mixture ratio of the stabilizer ingredient and marine clay was determined.

  • PDF