• Title/Summary/Keyword: Unconfined strength

Search Result 572, Processing Time 0.029 seconds

Solidification/stabilization of simulated cadmium-contaminated wastes with magnesium potassium phosphate cement

  • Su, Ying;Yang, Jianming;Liu, Debin;Zhen, Shucong;Lin, Naixi;Zhou, Yongxin
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • Magnesium potassium phosphate cement (MKPC) is an effective agent for solidification/stabilization (S/S) technology. To further explore the mechanism of the S/S by MKPC, two kinds of Cd including $Cd(NO_3)_2$ solution (L-Cd) and municipal solid waste incineration fly ash (MSWI FA) adsorbed Cd (S-Cd), were used to compare the effects of the form of heavy metal on S/S. The results showed that all the MKPC pastes had a high unconfined compressive strength (UCS) above 11 MPa. For L-Cd pastes, Cd leaching concentration increased with the increase of Cd content, and decreased with the increase of curing time. With the percentage of MSWI FA below 20%, S-Cd pastes exhibited similar Cd leaching concentrations as those of L-Cd pastes, while when the content of MSWI FA come up to 30%, the Cd leaching concentration increased significantly. To meet the standard GB5085.3-2007, the highest addition of S-Cd was 30% MSWI FA (6% Cd contained), with the Cd leaching concentration of 0.817 mg/L. The S/S of L-Cd is mainly due to chemical fixation, and the hydration compound of Cd was $NaCdPO_4$, while the S/S of S-Cd is due to physical encapsulation, which is dependent on the pore/crack size and porosity of the MKPC pastes.

A Study on Seepage Cutoff Effect of the Environmentally Friendly SCM (SCM 친환경주입공법에 의한 차수 효과에 관한 연구)

  • Chun, Byung-Sik;Roh, Jong-Ryun;Jooi, Tae-Seong;Do, Jong-Nam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.4
    • /
    • pp.65-71
    • /
    • 2005
  • Recently, difficulties in soft ground improvement that caused by effectiveness of the ground improvement, the durability and environmentally friendliness of the injection material come to the fore. This paper studies the field applicability of the SCM in reinforcement and seepage cutoff of the back of an existing continuous wall. SCM uses double rod which imposes heavy pressure($10-100kgf/cm^2$) to disturbed, cut, discharge, and mix the ground. It is observed that a bulb is formed by using cement paste and environmentally friendly injection materials with minimal alkali leaching. Unconfined compression test and fish poison tests are performed. Test results indicate that the method results in higher durability, less leaching through use of the environmentally friendly injection material, and faster mobilization of the strength. In addition, field tests confirm the formation of the bulb and the seepage cutoff wall.

  • PDF

Development of Design Method for Reinforced Roadbed Considering Plastic Settlement for High-speed Railway (고속철도에서의 소성침하를 고려한 강화노반 설계기법 개발)

  • Choi, Chan-Yong;Choi, Won-Il;Han, Sang-Jae;Jung, Jae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.55-69
    • /
    • 2013
  • An alternative design method of existing methods based on elastic theory the design method of roadbed considering plastic deformation of roadbed and stress-strain at roadbed materials with the cyclic loading of trains passing. The characteristics of the developed design method considering traffic load, number of cyclic loading and resilience modulus of roadbed materials can evaluate elastic strain as well as plastic settlement with allowable design criteria. The proposed design method is applied to standard roadbed section drawing of HONAM high-speed railway considering design conditions such as allowable elastic and plastic settlement, train speed, the tonnage of trains. As a result, required levels of resilience modulus model parameter ($A_E$), unconfined compressive strength, types of soil material were evaluated.

Planting Properties of Herbaceous Plant and Cool-season Grass in Environmentally Friendly Planting Block Using CSG Materials (CSG 재료를 이용한 친환경 식생 블록 내 초본식물 및 한지형 잔디의 식생 특성)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.33-40
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which that can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the planting properties of herbaceous plant and cool-season grass in CSG blocks that were manufactured by using CSG materials to develop environmentally friendly CSG method. The two types of CSG-0 without cement and CSG-100 with $100\;kg/m^3$ of cement were designed to evaluate compaction, unconfined compressive strength and growth of plants with cement content by using modified E compaction. To analyze growth properties of plants, germination ratio, visual cover, plant height and root length were measured in 4 weeks and 8 weeks after sowing. As the results, the germination regardless kinds of plants started within 5~7days and the germination ratio were in the range of 50~60 %. The visual cover of kinds of plants by visual rating system were in the range of 7~8 and the visual cover of tall fescue and perennial ryegrass was higher than that of lespedeza cuneata. The plant height and root length for tall fescue and perennial ryegrass in 8 weeks after sowing were in the range of 22~26 cm, 12~15 cm and 4~6 cm, 3~5 cm, respectively.

Fixation Mechanism and Leachability of Heavy Metal for Sludge Solidified by Silica Fume and Cement (실리카흄을 이용한 중금속함유 유기성 슬러지 시멘트 고화체의 용출특성과 고정화기작에 관한 연구)

  • Jun, Kwan-Soo;Hwang, Byung-Gi
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.180-186
    • /
    • 2005
  • This paper discusses the development of mixtures for silica fume as a stabilization/solidification agent and a binder for industrial wastewater residue containing organic and heavy metal contaminants. The UCS (unconfined compressive strength) gradually increased to 66.7% as the silica fume content increased to 15%. The leaching of TOC (total organic carbon) and chromium decreased as more OPC (Ordinary Portland Cement) was substituted with the silica fume. When a mixture had 5% silica fume, it retained about 85% TOC, and chromium leached out 0.76 mg-Cr/g-Cr in acidic solution. Also, microstructural studies of the solidified analysis showed that the silica fume caused an inhibition to the ettringite formation which did not contrilbute to setting but coated the cement particles and retarded the setting reactions. The results indicated that the incorporation of silica fume into the cement matrix minimized the detrimental effects of organic materials on the cement hydration reaction and the contaminant leachability.

Investigations of different steel layouts on the seismic behavior of transition steel-concrete composite connections

  • Qi, Liangjie;Xue, Jianyang;Zhai, Lei
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.173-185
    • /
    • 2019
  • This article presents a comparative study of the effect of steel layouts on the seismic behavior of transition steel-concrete composite connections, both experimental and analytical investigations of concrete filled steel tube-reinforced concrete (CFST-RC) and steel reinforecd concrete-reinforced concrete (SRC-RC) structures were conducted. The steel-concrete composite connections were subjected to combined constant axial load and lateral cyclic displacements. Tests were carried out on four full-scale connections extracted from a real project engineering with different levels of axial force. The effect of steel layouts on the mechanical behavior of the transition connections was evaluated by failure modes, hysteretic behavior, backbone curves, displacement ductility, energy dissipation capacity and stiffness degradation. Test results showed that different steel layouts led to significantly different failure modes. For CFST-RC transition specimens, the circular cracks of the concrete at the RC column base was followed by steel yielding at the bottom of the CFST column. While uncoordinated deformation could be observed between SRC and RC columns in SRC-RC transition specimens, the crushing and peeling damage of unconfined concrete at the SRC column base was more serious. The existences of I-shape steel and steel tube avoided the pinching phenomenon on the hysteresis curve, which was different from the hysteresis curve of the general reinforced concrete column. The hysteresis loops were spindle-shaped, indicating excellent seismic performance for these transition composite connections. The average values of equivalent viscous damping coefficients of the four specimens are 0.123, 0.186 and 0.304 corresponding to the yielding point, peak point and ultimate point, respectively. Those values demonstrate that the transition steel-concrete composite connections have great energy dissipating capacity. Based on the experimental research, a high-fidelity ABAQUS model was established to further study the influence of concrete strength, steel grade and longitudinal reinforcement ratio on the mechanical behavior of transition composite connections.

Study on Cement-based Grout for Closed-loop Vertical Grout Heat Exchanger (수직 밀폐형 지중열교환기 뒤채움재로서 시멘트 그라우트의 적용성 검토)

  • Park, Moon-Seo;Wi, Ji-Hae;Lee, Chul-Ho;Choi, Hang-Seok;Kang, Shin-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.107-115
    • /
    • 2010
  • In this paper, the applicability of cement grout bas been studied as an alternative to bentontite grout to backfill ground heat exchangers. To provide an optimal mixture design, the groutabilty and thermal conductivity of cement grouts with various mixture ratios were experimentally evaluated and compared. The unconfined compression strength of cement grout specimen was measured, which was exposed to cyclic temperature variation ranging from $50^{\circ}C$ to $-5^{\circ}C$. In addition, the integrity of the interface between circulating HDPE pipes and cement grout was evaluated by performing equivalent hydraulic conductivity tests, on the specimen. in which a pipe locates at the center of the specimen.

Turbidity Calibration of Borehole Roughness Measurement System (BKS-LRPS) Usable in Water (수중에서 사용가능한 굴착공 벽면거칠기 측정 시스템(BKS-LRPS)의 굴착공 내 혼탁도 보정에 관한 연구)

  • Park, Bong-Geun;Choi, Yong-Kyu;Kim, Myung-Hak;Kwon, Oh-Kyun;Nam, Moon-S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.25-32
    • /
    • 2008
  • Based on recent studies, the side resistance of rock socketed drilled shafts was affected by unconfined compressive strength of rock, socket roughness, rock types and joints, and initial normal stress. Especially, the socket roughness was affected by rock types and joints, drilling methods, and diameters of pile. In this study, a new roughness measurement system (BKS-LRPS, Backyoung-KyungSung Laser Roughness Profiling System) usable in water was developed. Based on the laboratory model tests, an EMD (Effective Measurement Distances) according to various turbidity was proposed as $EMD=1149.2{\times}T_{b}^{-0.64}$.

Calibration of Borehole Roughness Measurement System for Large Diameter Drilled Shafts in Water (수중에서 적용가능한 대구경 현장타설말뚝의 굴착공 벽면거칠기 측정장치의 보정에 관한 연구)

  • Park, Bong-Geun;Nam, Moon-S.;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.5-21
    • /
    • 2009
  • Based on recent studies on rock socketed drilled shafts, it was found that the side resistance of rock socketed drilled shafts is affected by unconfined compressive strength of rock, socket roughness, rock types and joints, and initial normal stress. Especially, the socket roughness is affected by rock types and joints, drilling methods, and diameters. Since existing roughness measurement systems could be conducted only in the air, a new roughness measurement system, which can measure rock socket roughness in the air and also in the water, is needed. However, the development of new roughness measurement system fur civil engineers has been faced with difficulties of electrical applications. In this study, the laboratory verification system far BKS-LRPS (Backyoung-KyungSung Laser Roughness Profiling System) was developed, which can be applied both in the water and air. Based on the laboratory verification, it was found that the improved BKS-LRPS could define effective measurement distances for the conditions reflecting the apparatus and in-situ situations.

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.