• Title/Summary/Keyword: Unconfined compressive strength test

Search Result 226, Processing Time 0.026 seconds

Mechanical properties of stabilized saline soil as road embankment filling material

  • Li Wei;Shouxi Chai;Pei Wang
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.499-510
    • /
    • 2024
  • In northern China, abundant summer rainfall and a higher water table can weaken the soil due to salt heave, collapsibility, and increased moisture absorption, thus the chlorine saline soil (silty clay) needs to be stabilized prior to use in road embankments. To optimize chlorine saline soil stabilizing programs, unconfined compressive strength tests were conducted on soil treated with five different stabilizers before and after soaking, followed by field compaction test and unconfined compressive strength test on a trial road embankment. In situ testing were performed with the stabilized soils in an expressway embankment, and the results demonstrated that the stabilized soil with lime and SH agent (an organic stabilizer composed of modified polyvinyl alcohol and water) is suitable for road embankments. The appropriate addition ratio of stabilized soil is 10% lime and 0.9% SH agent. SH agent wrapped soil particles, filled soil pores, and generated a silk-like web to improve the moisture stability, strength, and stress-strain performance of stabilized soil.

Assessment of the unconfined compression strength of unsaturated lateritic soil using the UPV

  • Wang, Chien-Chih;Lin, Horn-Da;Li, An-Jui;Ting, Kai-En
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.339-349
    • /
    • 2020
  • This study investigates the feasibility of using the results of the UPV (ultrasonic pulse velocity) test to assess the UCS (unconfined compressive strength) of unsaturated soil. A series of laboratory tests was conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compressive test was combined with the pressure plate test to obtain the unconfined compressive strength and its matric suction (s) of the samples. Soil samples were first compacted at the designated water content and subsequently subjected to the wetting process for saturation and the following drying process to its target suction using the apparatus developed by the authors. The correlations among the UCS, s and UPV were studied. The test results show that both the UCS and UPV significantly increased with the matric suction regardless of the initial compaction condition, but neither the UCS nor UPV obviously varied when the matric suction was less than the air-entry value. In addition, the UCS approximately linearly increased with increasing UPV. According to the investigation of the test results, simplified methods to estimate the UCS using the UPV or matric suction were established. Furthermore, an empirical formula of the matric suction calculated from the UPV was proposed. From the comparison between the predicted values and the test results, the MAPE values of UCS were 4.52-9.98% and were less than 10%, and the MAPE value of matric suction was 17.3% and in the range of 10-20%. Thus, the established formulas have good forecasting accuracy and may be applied to the stability analysis of the unsaturated soil slope. However, further study is warranted for validation.

A Study on Hardening Behavior of Colloidal Silica-Cement Grout (실리카졸-시멘트 그라우트의 고결특성에 대한 연구)

  • Kim, Young-Hun;Kim, Hae-Yang;Hyun, Ho-Gyu;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.529-534
    • /
    • 2009
  • This study had propose that a characteristic of recently developed Silicasol to make a close in this study, grouting material usually used portland cement and a characteristic is compared between Silicasol and sodium silicate in this study, examined strength and environmentally friendly for compare characteristics of sodium silicate and Silicasol through unconfined compressive strength, SEM analysis, Permeability test, Chemical Resistance test, leaching test etc. In the test, I gained that unconfined compressive strength of Silicasol three times promoted than sodium silicate Within 72 hours and I gined through analysis of SEM that Silicasol is more compactivetive than sodium silicate. In the result of test, it was found to be a environmentally friendly material as the toatal amount of eluviated elementary had small quantity.

  • PDF

Effects of Soil-cement Stabilization about the Song-I in Cheju Province (제주도"송이"의 시멘트안정처리 효과에 관하여)

  • 신광식;도덕현;이성태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.4
    • /
    • pp.53-59
    • /
    • 1981
  • This experiment was carried out to find out the effectiveness of soil cement stabilization about the Song-I in Cheju province. The results are summarized as follows; 1.The increasing ratio of unconfined compressive strength according to the increment of cement content was markedly low compared with the weathered granite soil, so the effect of stabilization was low. 2.The moisture content of the sample of Song-I indicates the maximum unconfined compressive strength showed at the 5% or so of dry side than the optimum moisture content and the change of the unconfined compressive strength according to the change of moisture content was not sensitive compared with the weathered granite soil. 3.Generally the primary strength of curing age within 7 days of the sulfate resisting cement was low compared with the normal portland cement and the strength of 28 curing days showed a similar tendency, especially in case of Song-I, and it seemed that the sulfate resisting cement was a little more effective than the normal portland cement. 4.As the unconfined compressive strength of grain size controlled Song-I was low compared with the weathered granite soil, so the rate of weight loss by the durability test was great, therefore it was thought that the durability was weak.

  • PDF

Study on the Soil Compaction (Part 4) -The Influence of Soil Compadtion on Unconfined Compressive Strength and Coefficient of Permeability- (흙의 다짐에 관한 연구(제4보) -흙의 다짐이 -축골조강동 및 투수계수에 미치는 영향-)

  • 강예묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.3
    • /
    • pp.2003-2012
    • /
    • 1970
  • In order to the influence of grain size distribution on compressive strength and coefficient of permeability, unconfined compression test and permeability test were performed for seventy samples that have various grain-size distributions. Its results are as follows: 1. Maximum unconfined compressive strength appears at the dry side of optimum moisture content. 2. Unconfined compressive strength is proportional to the increase of percent passing of No. 200 sieve. 3. Precent of deformation in failure increases in proportion to the increase of percent passing of No. 200 sieve, and modulus of No. 200 sieve, and modulus of deformation also increases in proportion to percent passing of No. 200 sieve. 4. Unconfined compressive strength increases in proportion to uniformity coefficient, liquid limit and plastic index, but it decreases gradually according to the increase of coefficient of grading and classification area. 5. Maximum dry density decreases according to the increase of void ratio. 6. Coefficient of permeability decreases according to the increase of percent passing of No. 200 sieve, and when percent of No. 200 sieve, and when percent passing of No. 200 enlarged more than 40%, it becomes less than $10^{-6}cm/sec$ which is the limit of coefficient of permeability of core material for earth dam proposed by Lee. 7. Coefficient of permeability increases according to the increase of coefficient of grading, classification area and index of Talbot formula r, but it was rather decrease by the increase of uniformity coefficient. 8. Coefficient of permeability seems to depend on the size and the shape of the flow path which is a series of void to be concerned by the size and the proprton of soil grain, even though void ratios are same.

  • PDF

Characteristic of Resilient Modulus and Unconfined Compressive Strength for Recycled Materials blend with Cement Kiln Dust (CKD 혼합에 따른 Recycled Material의 회복탄성계수와 일축압축강도 특성)

  • Son, Young-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.19-25
    • /
    • 2010
  • This study was conducted to determine the resilient modulus (Mr) and the unconfined compressive strength (UCS) of two recycled roadway materials such as recycled pavement material (RPM) and road surface gravel (RSG) with or without cement kiln dust (CKD). The recycled materials were blended with two CKD contents (5, 10 %) and 28 day curing time. Mr and UCS tests were also conducted after 10cycles of freezing and thawing to asses the impact of freeze-thaw cycling. Mr was determined conducting by the laboratory test method described by NCHRP 1-28A. Stabilized RPM and RSG had a modulus and a strength higher than unstabilized RPM and RSG. Mr and UCS of RPM and RSG mixed with CKD increased with increasing CKD content. The results indicated that the addition of CKD could be improved the strength and the stiffness of RPM and RSG. Therefore, RPM, RSG and CKD could be used as an effective materials in the reconstruction of roads.

Assessment of the effect of sulfate attack on cement stabilized montmorillonite

  • Kalipcilar, Irem;Mardani-Aghabaglou, Ali;Sezer, Gozde Inan;Altun, Selim;Sezer, Alper
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.807-826
    • /
    • 2016
  • In this study, aiming to investigate the effects of sulfate attack on cement stabilized highly plastic clay; an experimental study was carried out considering the effects of cement type, sulfate type and its concentration, cement content and curing period. Unconfined compressive strength and chloride-ion penetration tests were performed to obtain strength and permeability characteristics of specimens cured under different conditions. Test results were evaluated along with microstructural investigations including SEM and EDS analyses. Results revealed that use of sulfate resistance cement instead of normal portland cement is more plausible for soils under the threat of sulfate attack. Besides, it was verified that sulfate concentration is responsible for strength loss and permeability increase in cement stabilized montmorillonite. Finally, empirical equations were proposed to estimate the unconfined compressive strength of cement stabilized montmorillonite, which was exposed to sulfate attack for 28 days.

Unconfined Compressive Strength of Soil Cement Mixed with NSC (NSC를 첨가한 소일시멘트의 일축압축강도)

  • 김병일;김영욱;이승현
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.159-165
    • /
    • 2002
  • Soil cement which is a mixture of soil, cement, and water has a broad range of applications since it is economical, ecological, and easy to use, repair, and reinforce. Its applications include pavements, stabilization of slopes, retaining walls, and improvements of soft ground to name a few. Other types of chemicals are often added to increase its strength. This study investigated unconfined compressive strength of cured soil cement mixed with New Soil Chemical(NSC). The investigation involved laboratory experiments under various conditions including soil type, cement content, and ratios of water to NSC. Results of the study show that NSC enhanced the unconfined compressive strength significantly, and the degree of enhancement was varied with test conditions.

Strength Prediction of Cement-Admixed using Low Plasticity Silt (저소성실트를 이용한 시멘트 혼합토의 강도 예측)

  • Park, Jongchan;Park, Minchul;Jeon, Jesung;Jeong, Sangguk;Park, Kyunghan;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.31-38
    • /
    • 2014
  • For analysis of mechanics properties of soil cement, unconfined compressive strength has been proposed by existing case studies. In this study, mechanical changes with water content of silt, curing time and cement content were analyzed through unconfined compressive strength test. In addition, the changes for B factor by Abrams were compared with existing case studies after the prediction equations could be proposed about the unconfined compressive strength of admixed cement soil. Especially, the B constant factor was changed with soil characteristics and curing time. For analysis results of appropriateness status and unconfined compressive strength, consideration of variable form was titrated. The prediction equations at low plasticity silt admixed using the uniaxial compressive strength with applying Abrams's equation and considering cement content, curing time is proposed.

The Compressive Strength and Durability Characteristics of Lime-Cement-Soil Mixtures (석회-시멘트 혼합토의 압축강도 및 내구 특성)

  • Oh, Sang-Eun;Yeon, Kyu-Seok;Kim, Ki-Sung;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.83-91
    • /
    • 2012
  • In this study, the compressive strength characteristics of lime-cement-soil mixtures, composed of lime, soil, and a small amount of cement, were investigated by performing the unconfined compression tests, the freezing and thawing tests, the wetting and drying tests and the permeability tests. The specimens were made by mixing soils with cement and lime. The cement contents were 0, 6, 8 and 10 %, and the lime contents were 2, 4, 5, 10, 15 and 20 % in weight. Each specimen was cured at constant temperature in a humidity room for 3, 7 and 28 days. The compressive strength characteristics of the lime-cement-soil mixtures were then investigated using the unconfined compression tests, freezing and thawing tests and the wetting and drying tests. Based on the test results, a discussion was made on the applicability of the lime-cement-soil mixtures as a construction material.