• Title/Summary/Keyword: Uncertainty processing

Search Result 245, Processing Time 0.034 seconds

Development of Line Standards Measurement System Using an Optical Microscope (광학 현미경을 이용한 선표준물 측정 시스템 개발)

  • Kim, Jong-Ahn;Kim, Jae-Wan;Kang, Chu-Shik;Eom, Tae-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.72-78
    • /
    • 2009
  • We developed a line standards measurement system using an optical microscope and measured two kinds of line standards. It consists of three main parts: an optical microscope module including a CCD camera, a stage system with a linear encoder, and a measurement program for a microscopic image processing. The magnification of microscope part was calibrated using one-dimensional gratings and the angular motion of stage was measured to estimate the Abbe error. The threshold level in line width measurement was determined by comparing with certified values of a line width reference specimen, and its validity was proved through the measurement of another line width specimen. The expanded uncertainty (k=2) was about 100 nm in the measurements of $1{\mu}m{\sim}10{\mu}m$ line width. In the comparison results of line spacing measurement, two kinds of values were coincide within the expanded uncertainty, which were obtained by the one-dimensional measuring machine in KRISS and the line standards measurement system. The expanded uncertainty (k=2) in the line spacing measurement was estimated as $\sqrt{(0.098{\mu}m)^2+(1.8{\times}10^{-4}{\times}L)^2}$. Therefore, it will be applied effectively to the calibration of line standards, such as line width and line spacing, with the expanded uncertainty of several hundreds nanometer.

Sensitivity and uncertainty quantification of neutronic integral data in the TRIGA Mark II research reactor

  • Makhloul, M.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Lahdour, M.;Kaddour, M.;Ahmed, Abdulaziz;Arectout, A.;El Yaakoubi, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.523-531
    • /
    • 2022
  • In order to study the sensitivity and the uncertainty of the Moroccan research reactor TRIGA Mark II, a model of this reactor has been developed in our ERSN laboratory for use with the N-Particle MCNP Monte Carlo transport codes (version 6). In this article, the sensitivities of the effective multiplication factor of this reactor are evaluated using the ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0 libraries and in 44 energy groups, for the cross sections of the fuel (U-235 and U-238) and the moderator (H-1 and O-16). However, the quantification of the uncertainty of the nuclear data is performed using the nuclear code NJOY99 for the generation and processing of covariance matrices. On the one hand, the highest uncertainty deviations, calculated using the ENDFB-VII.1 and JENDL4.0 evaluations, are 2275, 386 and 330 pcm respectively for the reactions U235(n, f), $ U_{235}(n\bar{\nu})$ and H1(n, γ). On the other hand, these differences are very small for the neutron reactions of O-16 and U-238. Regarding the neutron spectra, in CT-mid plane, they are very close for the three evaluations (ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0). These spectra present two peaks (thermal and fission) around the energies 0.05 eV and 1 MeV.

An Information Theory-based Approach to Modeling the Information Processing of NPP Operators

  • Kim, Jong-Hyun;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.301-313
    • /
    • 2002
  • This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task. The focus will be on i) developing a model for information processing of NPP operators and ii) quantifying the model. To resolve the problems of the previous approaches based on the information theory, i.e. the problems of single channel approaches, we primarily develop the information processing model having multiple stages, which contains information flows. Then the uncertainty of the information is quantified using the Conant’s model, 3 kind of information theory.

Development of climate change uncertainty assessment method for projecting the water resources (기후변화에 따른 수자원 전망의 불확실성 평가기법 개발)

  • Lee, Moon-Hwan;So, Jae-Min;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.657-671
    • /
    • 2016
  • It is expected that water resources will be changed spatially and temporally due to the global climate change. The quantitative assessment of change in water availability and appropriate water resources management measures are needed for corresponding adaptation. However, there are large uncertainties in climate change impact assessment on water resources. For this reason, development of technology to evaluate the uncertainties quantitatively is required. The objectives of this study are to develop the climate change uncertainty assessment method and to apply it. The 5 RCMs (HadGEM3-RA, RegCM4, MM5, WRF, and RSM), 5 statistical post-processing methods (SPP) and 2 hydrological models (HYM) were applied for evaluation. The results of the uncertainty analysis showed that the RCM was the largest sources of uncertainty in Spring, Summer, Autumn (29.3~68.9%), the hydrological model was the largest source of uncertainty in Winter (46.5%). This method can be possible to analyze the changes in the total uncertainty according to the specific RCM, SPP, HYM model. And then it is expected to provide the method to reduce the total uncertainty.

Study on Validity and Reliablity of the Cutoff Probe and Langmuir Probe via Comparative Experiment in the Processing Plasma

  • Kim, D.W.;You, S.J.;You, K.H.;Lee, J.W.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.576-576
    • /
    • 2013
  • Recently, diagnostics of plasma becomes more important due to requirement of precise control of plasma processing based on measurement of plasma characteristics. The Langmuir probe has been used for the diagnostics but it has an inevitable uncertainty and error sources such as incorrect tip length and RF noise. Instead of the Langmuir probe, various diagnostic methods have been developed and researched. The cutoff probe is promising one for plasma density using microwaves and resonance phenomenon at the plasma frequency. The cutoff probe has various advantages as follows; (i) it is simple and robust, (ii) it uses few assumptions, and (iii) it is free from deposition by reactive gas. However, the cutoff probe also has uncertainty and error sources such as gap between tips, tip length, direction of tip plane, and RF noise. In this study, the uncertainty and error sources in manufacturing both probes and in diagnostics process were analyzed via comparative experiment at various discharge conditions. Furthermore, to reveal the user dependence of both probes, three well trained Ph. D students made the Langmuir probe and the cutoff probe, respectively, and it were analyzed. Thought this study, it is established that reliability and validity of the Langmuir probe and the cutoff probe related with not only the intrinsic characteristics of probes but also probe user.

  • PDF

A Design of the Robust Controller for Stabilization of the Unstable System Using QFT(Quantitative Feedback Theory) (QFT(Quantitative Feedback Theory)를 이용한 불안정한 시스템의 안정화를 위한 강인 제어기 설계)

  • 강민구;변기식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.57-64
    • /
    • 2001
  • This paper propose a robust control method to achieve a desired system performance in spite of system uncertainty and disturbance uncertainty. The procedures of the robust controller based on QFT(Quantitative Feedback Theory) make template, bound and loop shaping which are considered by system parameter variations and performance specifications. To prove the efficiency, the designed controller is applied for an inverted pendulum which is so sensitive to the parameter variation and has a highly nonlinear and unstable characteristics. It is shown that the simulation and experimental results from the proposed controller are efficient in robustness of parameter variation and disturbance.

  • PDF

Robust Controller Design for Flexible Robot Arm Manipulator (유연한 로봇팔의 선단 위치 제어를 위한 강인한 제어기의 설계)

  • 신봉철;이형기;최연욱;안영주
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.76-82
    • /
    • 2002
  • The objective of this paper is to design a robust controller for a flexible robot arm manipulator using LMI(Linear Matrix Inequality) theory, and confirm its effectiveness through experimentation. We first describe a modeling Process of the flexible arm in order to get a mathematical model, and then discuss how to approximately obtain the uncertainty of the model for robust control. As to the control system design, we adopt the LMI-based H$_{\infty}$ synthesis algorithm which has the merits of eliminating the regularity restrictions attached to the Riccati-based methods. As a result of this, we can cope with the parameter variation (that is, modeling uncertainty) due to the tip-load variation. Finally we confirm the effectiveness of the controller through experiment and simulation.

  • PDF

Extension of the NEAMS workbench to parallel sensitivity and uncertainty analysis of thermal hydraulic parameters using Dakota and Nek5000

  • Delchini, Marc-Olivier G.;Swiler, Laura P.;Lefebvre, Robert A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3449-3459
    • /
    • 2021
  • With the increasing availability of high-performance computing (HPC) platforms, uncertainty quantification (UQ) and sensitivity analyses (SA) can be efficiently leveraged to optimize design parameters of complex engineering problems using modeling and simulation tools. The workflow involved in such studies heavily relies on HPC resources and hence requires pre-processing and post-processing capabilities of large amounts of data along with remote submission capabilities. The NEAMS Workbench addresses all aspects of the workflows involved in these studies by relying on a user-friendly graphical user interface and a python application program interface. This paper highlights the NEAMS Workbench capabilities by presenting a semiautomated coupling scheme between Dakota and any given package integrated with the NEAMS Workbench, yielding a simplified workflow for users. This new capability is demonstrated by running a SA of a turbulent flow in a pipe using the open-source Nek5000 CFD code. A total of 54 jobs were run on a HPC platform using the remote capabilities of the NEAMS Workbench. The results demonstrate that the semiautomated coupling scheme involving Dakota can be efficiently used for UQ and SA while keeping scripting tasks to a minimum for users. All input and output files used in this work are available in https://code.ornl.gov/neams-workbench/dakota-nek5000-study.

Decision based uncertainty model to predict rockburst in underground engineering structures using gradient boosting algorithms

  • Kidega, Richard;Ondiaka, Mary Nelima;Maina, Duncan;Jonah, Kiptanui Arap Too;Kamran, Muhammad
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.259-272
    • /
    • 2022
  • Rockburst is a dynamic, multivariate, and non-linear phenomenon that occurs in underground mining and civil engineering structures. Predicting rockburst is challenging since conventional models are not standardized. Hence, machine learning techniques would improve the prediction accuracies. This study describes decision based uncertainty models to predict rockburst in underground engineering structures using gradient boosting algorithms (GBM). The model input variables were uniaxial compressive strength (UCS), uniaxial tensile strength (UTS), maximum tangential stress (MTS), excavation depth (D), stress ratio (SR), and brittleness coefficient (BC). Several models were trained using different combinations of the input variables and a 3-fold cross-validation resampling procedure. The hyperparameters comprising learning rate, number of boosting iterations, tree depth, and number of minimum observations were tuned to attain the optimum models. The performance of the models was tested using classification accuracy, Cohen's kappa coefficient (k), sensitivity and specificity. The best-performing model showed a classification accuracy, k, sensitivity and specificity values of 98%, 93%, 1.00 and 0.957 respectively by optimizing model ROC metrics. The most and least influential input variables were MTS and BC, respectively. The partial dependence plots revealed the relationship between the changes in the input variables and model predictions. The findings reveal that GBM can be used to anticipate rockburst and guide decisions about support requirements before mining development.

Design and Fabrication of an Electromagnetic Flowmeter (전자기유량계의 설계 및 제작)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1385-1392
    • /
    • 2003
  • An electromagnetic flowmeter(EMF) was developed and its characteristics were compared with a commercial EMF. The developed EMF was designed as the 100 mm nominal diameter. A signal processing circuit was also developed for generating the magnetic field and converting the flow signal to flowrate and flow quantity. In order to obtain a more stable and reliable flow signal, the double magnetizing frequency was adopted for magnetizing the coil of the EMF. For the characterization of the developed EMF, the uncertainty of calibrator was estimated within $\pm$0.5 %. The evaluation procedure of the uncertainty followed the ISO Guide to the Expression of Uncertainty in Measurement. It was found that the flow signals between the electrodes were about $\pm$60-$\pm$300$\mu$V, which were sufficient for the discrimination of flowmeter and the protection of noise. The test results against the calibrator showed the good linearity in the range of 3 ㎥/h and 70 ㎥/h. A commercialized design of the EMF based on the current study will be technically more competitive in domestic and foreign market.