This paper presents a new method for seismic vulnerability assessment of buildings with reference to their operational limit state. The importance of this kind of evaluation arises from the civil protection necessity that some buildings, considered strategic for seismic emergency management, should retain their functionality also after a destructive earthquake. The method is based on the identification of experimental modal parameters from ambient vibrations measurements. The knowledge of the experimental modes allows to perform a linear spectral analysis computing the maximum structural drifts of the building caused by an assigned earthquake. Operational condition is then evaluated by comparing the maximum building drifts with the reference value assigned by the Italian Technical Code for the operational limit state. The uncertainty about the actual building seismic frequencies, typically significantly lower than the ambient ones, is explicitly taken into account through a probabilistic approach that allows to define for the building the Operational Index together with the Operational Probability Curve. The method is validated with experimental seismic data from a permanently monitored public building: by comparing the probabilistic prediction and the building experimental drifts, resulting from three weak earthquakes, the reliability of the method is confirmed. Finally an application of the method to a strategic building in Italy is presented: all the procedure, from ambient vibrations measurement, to seismic input definition, up to the computation of the Operational Probability Curve is illustrated.
Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.
Architects are facing increasing risks that result from heightened expectations of benefits and performance when designing green buildings compared to traditional buildings. This study aims to explore the possible risk factors for architects in green building projects in South Korea and assess risk mitigation measures. To attain this goal, 14 risk factors and 12 mitigation measures were determined through an extensive literature review. A questionnaire was administered to architects practicing green building design and criticality index was employed to assess major risk factors and mitigation measures. This study identified 'adoption of new technology and process', 'green building certification results', 'building products and materials', and 'energy saving uncertainty' as the major risk factors of green building projects. Additionally, the questionnaire proposed 'contract indicating each party's role, liability, and limitations clearly', 'utilizing integrated design process', and 'understanding client's goal in green building projects' as the three most effective risk mitigation measures in designing green buildings. There are few studies that focus on architects' perceived risks concerning green building projects; this study contributes to a deeper knowledge and attempts to fill the current literature gap, which would benefit South Korea's green building design practice by aiding in the development of better risk management strategies.
Fei, Suozhu;Tan, Xiaohui;Gong, Wenping;Dong, Xiaole;Zha, Fusheng;Xu, Long
Geomechanics and Engineering
/
v.24
no.2
/
pp.167-178
/
2021
Spatial variability is an inherent uncertainty of soil properties. Current reliability analyses generally incorporate random field theory and Monte Carlo simulation (MCS) when dealing with spatial variability, in which the computational efficiency is a significant challenge. This paper proposes a KL-FORM algorithm to improve the computational efficiency. In the proposed KL-FORM, Karhunen-Loeve (KL) expansion is used for discretizing random fields, and first-order reliability method (FORM) is employed for reliability analysis. The KL expansion and FORM can be used in conjunction, through adopting independent standard normal variables in the discretization of KL expansion as the basic variables in the FORM. To illustrate the effectiveness of this KL-FORM, it is applied to a case study of a strip footing in spatially variable unsaturated soil under rainfall, in which the bearing capacity of the footing is computed by numerical simulation. This case study shows that the KL-FORM is accurate and efficient. The parametric analyses suggest that ignoring the spatial variability of the soil may lead to an underestimation of the reliability index of the footing.
The Journal of Asian Finance, Economics and Business
/
v.8
no.3
/
pp.267-275
/
2021
This study investigates the relationship between cultural distance and entry mode choice, where the foreign investor firm and the host country are both from emergent economies. Within this framework, research is limited and the issue is whether companies, regardless of their specific situations, have the same strategy when they meet a high degree of uncertainty in the host environment. In this study, we focused on the influence of informal institutional factors: cultural distance, that has been extensively analyzed in international business, measured by Kogut and Singh index and defined according to Hofstede, Globe Project and Schwartz approaches. The general trend derived from prior research proves that when a company from a developed country is involved; overall more enthusiasm is shown for wholly-owned subsidiaries rather than joint venture. This result still stands validated for corporations from this emergent economy area. Our analysis of a sample of 163 FDI in the Kingdom of Saudi Arabia (KSA) using logistic binary regression model reveals that the foreign firms prefer to establish wholly-owned subsidiaries in the host country over entering into a joint venture with a local firm, taking into consideration the large cultural distance.
International Journal of Computer Science & Network Security
/
v.22
no.3
/
pp.29-36
/
2022
In deep learning classification tasks, most models frequently assume that all labels are available for the training datasets. As such strategies to learn new concepts from unlabeled datasets are scarce. In fingerprint classification tasks, most of the fingerprint datasets are labelled using the subject/individual and fingerprint datasets labelled with finger type classes are scarce. In this paper, authors have developed approaches of classifying fingerprint images using the majorly known fingerprint classes. Our study provides a flexible method to learn new classes of fingerprints. Our classifier model combines both the clustering technique and use of deep learning to cluster and hence label the fingerprint images into appropriate classes. The K means clustering strategy explores the label uncertainty and high-density regions from unlabeled data to be clustered. Using similarity index, five clusters are created. Deep learning is then used to train a model using a publicly known fingerprint dataset with known finger class types. A prediction technique is then employed to predict the classes of the clusters from the trained model. Our proposed model is better and has less computational costs in learning new classes and hence significantly saving on labelling costs of fingerprint images.
The Journal of Economics, Marketing and Management
/
v.10
no.5
/
pp.1-6
/
2022
Purpose: To overcome the question that depends too much on expert's subjective judgment in traditional risk identification, this paper structure the multilevel generalized fuzzy comprehensive evaluation mathematics model of the risk identification of project, to research the risk identification of the project. Research design, data and methodology: This paper constructs the multilevel generalized fuzzy comprehensive evaluation mathematics model. Through iterative algorithm of AHP analysis, make sure the important degree of the sub project in risk analysis, then combine expert's subjective judgment with objective quantitative analysis, and distinguish the risk through identification models. Meanwhile, the concrete method of multilevel generalized fuzzy comprehensive evaluation is probed. Using the index weights to analyse project risks is discussed in detail. Results: The improved fuzzy comprehensive evaluation algorithm is proposed in the paper, at first the method of fuzzy sets core is used to optimize the fuzzy relation matrix. It improves the capability of the algorithm. Then, the method of entropy weight is used to establish weight vectors. This makes the computation process fair and open. And thereby, the uncertainty of the evaluation result brought by the subjectivity can be avoided effectively and the evaluation result becomes more objective and more reasonable. Conclusions: In this paper, we use an improved fuzzy comprehensive evaluation method to evaluate a railroad engineering project risk. It can give a more reliable result for a reference of decision making.
This paper analyzes the entire distribution of stock market returns/volatility in five emerging markets (ASEAN5) and figures out the conditional distribution of the CHI_EPU index. The aim is to examine the impact of CHI_EPU on the stock returns/volatility density of ASEAN5 markets. It also examined whether changes in CHI_EPU explain returns at higher or lower points (abnormal returns). This paper models the behaviour of stock returns from March 2011 to June 2018 using a non-parametric conditional density estimation approach. The results indicate that CHI_EPU diminishes stock returns and augments volatility in ASEAN5 markets, except for Malaysia, where it affects stock returns positively. The possible reason for this positive impact is that EPU is not the leading factor reducing Malaysian stock returns; but, other forces, such as dependency on other countries' stock markets and global factors, may have a positive impact on stock returns (Bachmann and Bayer, 2013). Thus, the risk of simultaneous investment in Chinese and ASEAN5 stock markets, except Malaysia, is high. Further, the degree of this influence intensifies at extreme high/low intervals (positive/negative tails). The findings of this study have significant implications for investors, policymakers, market agents, and analysts of ASEAN5.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.134-134
/
2021
Precipitation is a crucial component of water cycle and play a key role in hydrological processes. Traditionally, gauge-based precipitation is the main method to achieve high accuracy of rainfall estimation, but its distribution is sparsely in mountainous areas. Recently, satellite-based precipitation products (SPPs) provide grid-based precipitation with spatio-temporal variability, but SPPs contain a lot of uncertainty in estimated precipitation, and the spatial resolution quite coarse. To overcome these limitations, this study aims to generate new grid-based daily precipitation using Automatic weather system (AWS) in Korea and multiple SPPs(i.e. CHIRPSv2, CMORPH, GSMaP, TRMMv7) during the period of 2003-2017. And this study used a machine learning based Random Forest (RF) model for generating new merging precipitation. In addition, several statistical linear merging methods are used to compare with the results of the RF model. In order to investigate the efficiency of RF, observed data from 64 observed Automated Synoptic Observation System (ASOS) were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the random forest model showed higher accuracy than each satellite rainfall product and spatio-temporal variability was better reflected than other statistical merging methods. Therefore, a random forest-based ensemble satellite precipitation product can be efficiently used for hydrological simulations in ungauged basins such as the Mekong River.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.9
/
pp.2314-2333
/
2023
It is significant to predict the performance degradation of complex electromechanical systems. Among the existing performance degradation prediction models, belief rule base (BRB) is a model that deal with quantitative data and qualitative information with uncertainty. However, when analyzing dynamic systems where observable indicators change frequently over time and working conditions, the traditional belief rule base (BRB) can not adapt to frequent changes in working conditions, such as the prediction of aeroengine performance degradation considering working condition. For the sake of settling this problem, this paper puts forward a new hidden belief rule base (HBRB) prediction method, in which the performance of aeroengines is regarded as hidden behavior, and operating conditions are used as observable indicators of the HBRB model to describe the hidden behavior to solve the problem of performance degradation prediction under different times and operating conditions. The performance degradation prediction case study of turbofan aeroengine simulation experiments proves the advantages of HBRB model, and the results testify the effectiveness and practicability of this method. Furthermore, it is compared with other advanced forecasting methods. The results testify this model can generate better predictions in aspects of accuracy and interpretability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.