• 제목/요약/키워드: Unbalanced fault

검색결과 83건 처리시간 0.02초

3상회로의 직접해석에 의한 송배전계통 선간단락 사고 고장거리 계산 알고리즘 (A New Line to Line Fault Location Algorithm in Distribution Power Networks using 3 Phase Direct Analysis)

  • 최면송;이승재;임성일;진보건;이덕수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권9호
    • /
    • pp.467-473
    • /
    • 2002
  • In this paper, a fault location algorithm is suggested for line to line faults in distribution networks. Conventional fault location algorithms use the symmetrical component transformation, a very useful tool for transmission network analysis. However, its application is restricted to balanced network only. Distribution networks are, in general, operated in unbalanced manners, therefore, conventional methods cannot be applied directly, which is the reason why there are few research results on fault location in distribution networks. Especially, the line to line fault is considered as a more difficult subject. The proposed algorithm uses direct 3-phase circuit analysis, which means it can be applied not only to balanced networks but also to unbalanced networks like distribution a network. The comparisons of simulation results between one of conventional methods and the suggested method are presented to show its effectiveness and accuracy.

초전도 전력케이블의 전류 불평형에 관한 연구 (A Study on the Unbalanced Current Distribution of HTS Power Cable)

  • 김재호;박충화
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.43-47
    • /
    • 2012
  • The unbalance currents flow the High Temperature Superconducting (HTS) power cable caused by asymmetrical fault, harmonic distortion and unbalanced load. That problem causes additional loss and leakage field in the HTS power cable, and deteriorates the electric power quality and stability. In addition, large amounts of unbalanced current can cause negative sequence and ground relays to operate. This paper presents an analysis unbalanced three-phase current distribution in HTS power cable caused by unbalanced load condition and grounding methods using PSCAD/EMTDC. The results obtained through the analysis would provide important data for the design of HTS power cables and valid information for their installation in power system.

3상회로의 직접해석에 의한 배전계통 선간단락 사고 고장거리 계산 알고리즘 (A new line to line fault location algorithm in distribution power networks using 3 phase direct analysis)

  • 진보건;최면송;이승재;윤남선;정병태;이덕수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.108-110
    • /
    • 2002
  • In this paper, a fault location algorithm is suggested for line to line faults in distribution networks. Conventional fault location algorithms use the symmetrical component transformation, a very useful tool for transmission network analysis. However, its application is restricted to balanced network only. Distribution networks are, in general, operated in unbalanced manners, therefore, conventional methods cannot be applied directly, which is the reason why there are few research results on fault location in distribution networks. Especially, the line to line fault is considered as a more difficult subject. The proposed algorithm uses direct 3-phase circuit analysis, which means it can be applied not only to balanced networks but also to unbalanced networks like distribution a network. The comparisons of simulation results between one of conventional methods and the suggested method are presented to show its effectiveness and accuracy.

  • PDF

3상회로 직접해석에 의한 배편계통 1선지락사고 고장거리 계산 알고리즘 (A New fault Location Algorithm for a Line to Ground fault Using Direct 3-phase Circuit Analysis in Distribution Power Networks)

  • 최면송;이승재;이덕수;진보건;민병운
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권8호
    • /
    • pp.409-416
    • /
    • 2002
  • This paper presents a fault location algorithm using direct 3-phase circuit analysis for distribution power networks. The unbalanced feature of distribution networks due to single phase loads or asymmetric operation prohibits us from using the conventional symmetrical component transformation. Even though the symmetrical component transformation provides us with a very easy tool in three phase network analysis, it is limited to balanced systems in utilizing its strong point, which is not suitable for distribution networks. In this paper, a fault location algorithm using direct 3-phase circuit analysis is developed. The algorithm is derived and it Is shown that the proposed method if we use matrix inverse lemma, is not more difficult then the conventional methods using symmetrical component transformation. Since the symmetrical component transformation is not used in the suggested method, unbalanced networks also can be handled with the same difficulty as balanced networks. The case study results show the correctness and effectiveness of the proposed algorithm.

지중송전선로의 대칭분 임피던스 모델링에 관한 연구 (A Study on the Sequence Impedance Modeling of Underground Transmission Systems)

  • 황영록;김경철
    • 조명전기설비학회논문지
    • /
    • 제28권6호
    • /
    • pp.60-67
    • /
    • 2014
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. The majority of fault in transmission lines is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and ground wires in overhead transmission systems and through cable sheaths and earth in underground transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, EMTP-based sequence impedance calculation method was described and applied to 345kV cable transmission systems. Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

고장전류를 이용한 동기 발전기 보호 (Synchronous Generator Protection using Fault Currents)

  • 박철원;안준영;이상성;신명철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.399-401
    • /
    • 2006
  • This paper proposes a synchronous generator protection algorithm using Discrete Wavelet Transform for detection of fault currents. The proposed technique is implemented by using the C language and the Wavemenu of MATLAB Toolbox, and consists of normal state and internal fault state. The effectiveness of proposed method is demonstrated by MATLAB simulation package for synchronous generator, which collects the balanced and unbalanced fault currents through simulation.

  • PDF

제작소가 상이한 단상 주변압기 병행 운전시 불평형전압의 검토 (The Calculation of Unbalanced Voltage on the tertiary bus of a single phase auto transformer in case of Parallel Operation with Different Manufacturer)

  • 심응보;우정욱;곽주식;조성훈;허용호;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.458-460
    • /
    • 2001
  • This paper described the unbalanced voltage on the tertiary bus of a single Phase auto transformer in the case of parallel operation with different manufacturer at each Phase. The unbalanced capacitances between primary to secondary winding, secondary to tertiary winding and primary to tertiary winding makes unbalanced bus voltage in the tertiary bus side. The unbalanced voltage let the surge arrester to operate in the power frequency range, and it causes the arrester to burn out. The failure of the arrester at one phase makes line to ground fault, which lead to the surge arrester failure of the other two phase on the tertiary bus.

  • PDF

전력계통 송배전선로 2회선 1선지락사고 고장거리 검출 알고리즘 (Fault Location Algorithms for the Line to Ground Fault of Parallel-Circuit Line in Power Systems)

  • 최면송;이승재;강상희;이한웅
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권1호
    • /
    • pp.29-35
    • /
    • 2003
  • This paper presents a fault location algorithm when there are parallel circuits in power system networks. In transmission networks, a fault location method using the distribution factor of fault currents is introduced and in distribution networks a method using direct 3-phase circuit analysis is developed, because the distribution networks are unbalanced. The effect of parallel circuits in fault location is studied in this paper. The effect is important for the range of protecting zones of distance relay in transmission networks and fault location in distribution networks. The result of developed fault location algorithm shows high accuracy in the simulation that using the EMTP.

3개의 초전도 소자를 갖는 자속구속형 SFCL과 변압기형 SFCL의 특성 비교 (Comparison of Characteristics on the Flux-Lock and the Transformer Type SFCLs with Three Superconducting Units)

  • 이주형;최효상
    • 전기학회논문지P
    • /
    • 제58권1호
    • /
    • pp.79-84
    • /
    • 2009
  • In order to increase the capacity of the superconducting fault current limiter(SFCL), the current and voltage grades of the SFCL must be increased. As a method for the increase of the current and voltage grades of the SFCL, we compared the various characteristics between the flux-lock type SFCL "With three superconducting units connected in series and the transformer type SFCL using the transformer with three secondary circuits. One of three superconducting units had not quenched in the flux-lock type SFCL. Therefore, the unbalanced power burden happened because of the voltage difference generated by unbalanced quenching between the superconducting units. In the meantime, the three superconducting units were all quenched in the transformer type SFCL using the transformer, and the voltage difference generated between the superconducting units was decreased. Therefore, the difference of critical characteristics was complemented by distribution of fault current in accordance with the turn's ratio between primary and secondary windings. The unbalanced power burden of the superconducting units was reduced due to flux-share between the superconducting units in the transformer. In conclusion, the capacity increment of the SFCL using a transformer was easier due to equal distribution of voltages generated by simultaneous quench of the superconducting units. We think that the characteristics is improved more because of the decrease of saturation in the iron core if the secondary winding is increased in the SFCL using the transformer.

다양한 불평형 계통 상황에서 계통 연계형 3-레벨 NPC 컨버터의 중성점 전류 변동에 대한 해석 및 제어 (Analysis and Control of Neutral Point Current Deviation in Grid Tied 3-Level NPC Converter under Various Grid Unbalanced Conditions)

  • 최재훈;서용석
    • 전력전자학회논문지
    • /
    • 제25권5호
    • /
    • pp.385-393
    • /
    • 2020
  • This study introduces an analysis and control method for the variation of neutral point current in a grid-tied three-level neutral point clamped (NPC) converter under various grid imbalance operating conditions. Various fault cases with unbalanced amplitude and phase are systematically categorized and described using a unified metric called the imbalance factor. The fundamental component of neutral point current is generated under grid imbalance cases. The pattern and behavior of this fundamental component of neutral point current highly depend on the imbalance factor regardless of the particular type of grid fault cases. The control scheme for regulating the negative sequential component of AC input current effectively reduces the size of the fundamental component of neutral point current under a wide range of grid imbalance cases. The control scheme will enable a grid-tied three-level NPC converter to operate reliably and stably under various types of grid faults.