• 제목/요약/키워드: Unbalance vibration

검색결과 309건 처리시간 0.023초

소형 모사 장비의 데이터를 이용한 선박용 전기 추진 모터의 고장 유형별 진동 신호의 분류 (Classification of Vibration Signals for Different Types of Failures in Electric Propulsion Motors for Ships Using Data from Small-Scale Apparatus)

  • 유승열;장준교;전민성;이재철;강동훈;이순섭
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.441-449
    • /
    • 2023
  • With the enforcement of environmental regulations by the International Maritime Organization, the market for eco-friendly ships is expanding, and ships using electric propulsion devices are emerging as a promising solution. Many studies have been conducted to predict the failure of ships, but most of them are mainly research on the main diesel engine of ships. As the ship's propulsion method changes, new data is needed to predict the failure of electric propulsion ships. In this paper aims to analyze the failure characteristics of the electric propulsion system in consideration of the difference in the type of failure between the internal diesel engine and the electric propulsion system. The ship's propulsion unit assumed a DC motor and a signal pattern for normal conditions and general failure modes, but the failure record of the electric propulsion device operated on the actual ship was not available, so it generated a failure signal for small electric motor equipment to identify the failure signal. Assuming unbalance, misalignment, and bearing failure, which are the primary failure modes of the ship's electric motor, a failure signal was generated using a "rotator vibration data generator," and the frequency band, size, and phase difference of the measured vibration signal were analyzed to analyze the characteristics of each failure condition. Finally, the characteristics of each failure condition were identified so that the signals according to the failure type could be classified.

FCEV용 원심형 터보 블로워의 마운트 진동 저감에 관한 연구 (A Study on Mount Vibration Reduction of a Centrifugal Turbo Blower for FCEV)

  • 김윤석;이상권
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.1073-1081
    • /
    • 2008
  • A centrifugal turbo blower of the fuel cell electric vehicle (FCEV) operates at very high speed above 30000 rpm in order to increase the pressure of the air, which supplied to a stack of FCEV, using rotation of its impeller blades. Vibration which originated from the blower is generated by unbalance of mechanical components, rotation of bearings and rotating asymmetry that rotate at high speed. The vibration is transmitted to receiving structure through vibration isolators and it can causes serious problems in the noise, vibration and harshness(NVH) performance. Thus, the study about reducing this kind of vibration is an important task. In this paper, dynamic analysis of the blower executed by numerical simulation and experimental analysis of the blower is also performed. Then, measured and simulated results are compared in order to validate of the simulation. Finally, reducing vibration through modifying mount stiffness is the main purpose of this paper.

영향계수를 이용한 고속 주축시스템의 자동밸런싱 기법에 관한 연구 (A Study on the Active Balancing Method for High Speed Spindle System Using Influence Coefficient)

  • 김봉석;김종수;이수훈
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.48-53
    • /
    • 2001
  • In order to increase productivity and efficiency, high-speed rotating machines become popular these days. The high-speed rotating machine is likely to vibrate and cause machine failure even though it has small unbalance. Therefore, a balancing technique is studied in this paper. Off-line balancing methods are inadequate to solve unbalance vibration problem occurring in the field due to flexible rotor effect, faster tool change, and shorter spin-up and down, etc. An active balancing is suggested to allow re-balancing of the entire rotating assembly in the machine when a tool is changed. This paper shows how to identify the dynamics of the system using influence coefficient and suggest an active balancing technique based on influence coefficient method for high-speed spindle system.

  • PDF

100,000 rpm 운전용 원심분리기 로터-베어링 시스템의 회전체동역학 해석 (Rotordynamics of a Centrifuge Rotor-Bearing System for 100,000 rpm Operation)

  • 이안성;김영철;박종권
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.450-456
    • /
    • 1998
  • A rotordynamic analysis is performed with a centrifuge rotor-bearing system for the raing speed of 100,000 rpm. The system is composed of a centrifuge rotor(or simply the rotor), flexible shaft, motor rotor and shaft, and two support rolling element bearings of the motor shaft. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor at the associated critical speeds. The latter requirements are especially important as the system crosses multiple numbers of critical speeds and as the system may not have enough separaton margins around the rating speed. As the system adopts an extra-flexible shaft, it is shown that the rotor has satisfactory small unbalance responses over higher criticals while having an unsatisfactory large one at the first critical. To supress this a bumper ring or guide bearing needs to be installed at a suitable location of the flexible shaft. It is also shown that even with the flexible shaft the dynamics of the motor must be incoporated into the full system model to accurately identify the fourth critical speed, which is close to the rating speed, and higher ones. The analysis is based on the finite element method.

  • PDF

영향계수법을 이용한 고속 스핀들의 밸런싱에 관한 연구 (A Study on Balancing of High Speed Spindle using Influence Coefficient Method)

  • 구자함;김인환;허남수
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.104-110
    • /
    • 2012
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, it was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

V/W형 왕복동 공기압측기의 평형에 관한 연구 (A Study on the Balancing of V/W-type Reciprocating Air Compressor)

  • 김형진;김성춘;김정만;김의간
    • 한국소음진동공학회논문집
    • /
    • 제14권1호
    • /
    • pp.24-31
    • /
    • 2004
  • Recently, as the marine compressor power is increased, vibration problems on the marine vessel with V/W type reciprocating compressor have been occurred. A research on the balancing of marine V/W type reciprocating compressor has hardly been reported though a number of researches on the balancing of rotating machinery have been conducted. As a V/W type compressor has high capacity with long stroke, compact size and high center of gravity, It is easy to have a vibration problem by a little bit unbalanced force and moment. In this study, calculation methods for balance weight of the V/W type reciprocating compressors, which have different piston weight and asymmetry structure, are formulated. And their reliability were verified by comparing calculated balance weight with the experimental results of the real marine V/W type reciprocating compressors.

밸런스 샤프트 모듈 자동 동적검사 시스템 개발 (The Development of an Automatic Dynamic Inspection System of a Balance Shaft Module)

  • 성은제;강대규;정찬용;한창수;김명수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1231-1236
    • /
    • 2007
  • Balance Shaft Module is module parts that is installed to vehicles engine to reduce noise and vibration of vehicles engine. Balance Shaft Module's performance exerts important influence on performance of engine. Therefore, must be able to warrant quality and performance of Balance Shaft Module. Existing product found and revised error at continuous process of production, and estimated failure mode in Balance Shaft Module. Previous method hard to secure product that performance is excellent, and bring a lot of damages economically. Therefore, development of inspectin system for quality inspection of parts and performance test of assembly is essential in Balance Shaft Module. In this study, represented development process of automatic dynamic inspection system to test performance and detect breakdown of Balance Shaft Module that is producing in Dongbo.

  • PDF

수차발전기 축계의 진동해석 (Vibration Analysis of Hydraulic Turbine-Generator Rotor)

  • 김용한;손병구;최병근;양보석;하현천
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.250-254
    • /
    • 1998
  • Pump-storage power plants, which pumps water from the lower reservoir to the upper reservoir using the extra electronic power at night and generates the electronic power in the daytime, are more increasing. Currently it has a tendency to be high-head large-capacity machines. So in the processing of design, we need to know the vibration characteristics of pump-turbine shaft system sufficiently. In this paper, we developed the computer programs for analyzing pump-turbine shaft system considering magnetic force of generator, hydraulic force at runner, dynamic characteristics of guide bearings and the effect of add mass of water. And the superiority of this program was verified by applying it to the real model and calculating high quality critical speed, natural mode and unbalance response.

  • PDF

에어컨 팬 BLDC 전동기의 음향공진에 관한 연구 (Study on Acoustic Resonance of Air-Conditioner Fan BLDC Motor)

  • 이홍주;김광석;권중학;방기창;황상문
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.212-217
    • /
    • 2008
  • Acoustic noises generated during motor operation in mechanical system are from electromagnetic, mechanical, aerodynamic, and electrical sources. For identification of mechanical noise origins, misalignment, unbalance, fan shape, resonance, and vibration modes have been extensively considered to describe noise behavior. An experiment-based approach as well as a mathematical approach needs to be adopted for a realistic study into noise and vibration of the motor, because motor noise characteristics differ from type to type due to various noise sources. In this paper, a brushless DC motor for air-conditioner fan is analyzed by finite element method to identify noise source, and the analysis results are verified by experiments, and sensitivity analysis is performed by design of experiments.

  • PDF

퍼지 마그네틱 댐퍼를 사용한 회전체 진동의 저감 연구 (A Study of Rotor Vibration Reduction using Fuzzy Magnetic Damper System)

  • 이형복;김영배
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.748-755
    • /
    • 2001
  • This paper concerns rotor vibration reduction using magnetic damper system. The fuzzy control logic is utilized to fulfill desired motion. The fuzzy system structure and membership function were first determined by simulation results. The researched control logic contains two fuzzy controller : reference position variation according to the rotor whirling status and error compensation algorithm to minimize the rotor vibration due to unbalance and unstable fluid film force. The Sugeno type output membership function was utilized by several trials and optimized membership function constants were selected from experiments. The experimental results show that the proposed method effectively control and reduce the rotor vibration with fluid film bearings.